首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
High-pressure Raman and mid-infrared spectroscopic studies were carried out on ZrP2O7 to 23.2 and 13 GPa respectively. In the pressure range 0.7–4.3 GPa the lattice mode at 248 cm?1 disappears, new modes appear around 380 and 1111 cm?1 and the strong symmetric stretching mode at 476 cm?1 softens, possibly indicating a subtle phase transition. Above 8 GPa all the modes broaden, and all of the Raman modes disappear beyond 18 GPa. On decompression from the highest pressure, 23.2, to 0 GPa all of the modes reappear but with larger full width at half maximum. Lattice dynamics of the high temperature phase of ZrP2O7 were studied using first principles method and compared with experimental values.  相似文献   

2.

In this work, a micro-Raman study under high hydrostatic pressure (up to ~5.5 GPa) has been carried on YBa2Cu4O8 and Y(Ba, Sr)2Cu4O8 single crystals at room temperature. In both samples, seven strong modes, of Ag symmetry, and one weak, of B3g symmetry, have been observed and examined in connection with previously published results concerning YBa2Cu4O8. With the Sr substitution for Ba, the ambient pressure measurements show an upward shift in energy for all modes, except those that involve vibrations of the plane and apex oxygen atoms. With increasing hydrostatic pressure all phonons shift to higher energies. Anomalous nonlinear pressure behaviour has been observed for three phonons, which is correlated with the pressure dependence of T c of these compounds.  相似文献   

3.
Infrared absorption and Raman study ofβ-Ni(OH)2 has been carried out up to 25 GPa and 33 GPa, respectively. The frequency ofA 2u internal antisymmetric stretching O-H mode decreases linearly with pressure at a rate of −0.7 cm1/GPa. The FWHM of this mode increases continuously with pressure and reaches a value of ∼ 120 cm−1 around 25 GPa. There was no discernible change observed in the frequency and width of the symmetric stretchingA 1g O-H Raman mode up to 33 GPa. The constancy of the Raman mode is taken as a signature of the repulsion produced by H-H contacts in this material under pressure. Lack of any discontinuity in these modes suggests that there is no phase transition in this material in the measured pressure range.  相似文献   

4.
A rare mineral shortite, Na2Ca2(CO3)3, occurs among groundmass minerals in unaltered kimberlites, which suggests its participation in the evolution of kimberlite system. This work presents a high pressure Raman spectroscopic study of natural shortite (Udachnaya east kimberlites) compressed in KBr up to 8?GPa in a diamond anvil cell. At ambient pressure the spectrum contains two strong bands related to symmetric C-O stretching vibrations, four in-plane bending modes, and several low-frequency modes of lattice vibrations. Upon the pressure increase up to 8?GPa, almost all the bands exhibit positive shift with the rate of 1–4?cm?1/GPa for the lattice modes and 3.6 and 3.9?cm?1/GPa for the C-O stretching modes. The shifts of Raman modes are rather regular, which implies the absence of reconstructive phase transitions within the studied pressure range, similarly to the behavior of nyerereite, a related carbonate mineral. However, minor anomalies in the ν/P and FWHM/P dependences, observed at about 2?GPa, suggest some rearrangement and disordering of carbonate groups. The obtained data can be used for the estimation of residual pressure in shortite-bearing inclusions in deep-seated minerals.  相似文献   

5.
Abstract

The effect of high hydrostatic pressure, up to 12GPa, on the intramolecular phonon frequencies and the material stability of the two-dimensional tetragonal Cm polymer has been studied by means of Raman spectroscopy in the spectral range of the radial intramolecular modes (200-800cm?1). A number of new Raman modes appear in the spectrum for pressures ~ 1.4 and ~ 5.0 GPa. The pressure coefficients for the majority of the phonon modes exhibit changes to lower values at P=4.0 GPa, which may be related to a structural modification of the 2D polymer to a more isotropic phase. The peculiarities observed in the Raman spectra are reversible and the material is stable in the pressure region investigated.  相似文献   

6.
The present paper reports the results of in situ Raman studies carried out on nano-crystalline CeO2 up to a pressure of 35 GPa at room temperature. The material was characterized at ambient conditions using X-ray diffraction and Raman spectroscopy and was found to have a cubic structure. We observed the Raman peak at ambient at 465 cm?1, which is characteristic of the cubic structure of the material. The sample was pressurized using a diamond anvil cell using ruby fluorescence as the pressure monitor, and the phase evolution was tracked by Raman spectroscopy. With an increase in the applied pressure, the cubic band was seen to steadily shift to higher wavenumbers. However, we observed the appearance of a number of new peaks around a pressure of about 34.7 GPa. CeO2 was found to undergo a phase transition to an orthorhombic α -PbCl2-type structure at this pressure. With the release of the applied pressure, the observed peaks steadily shift to lower wavenumbers. On decompression, the high pressure phase existed down to a total release of pressure.  相似文献   

7.
The superconductivity of solid oxygen in ζ phase was investigated by first-principles calculations based on the density functional theory. Using a monoclinic C2/m structure, we calculated the superconducting transition temperature by the Allen–Dynes formula and obtained 2.4 K at 100 GPa for the effective screened Coulomb repulsion constant μ* of 0.13. The transition temperature slowly decreases with increasing pressure and becomes 1.3 K at 200 GPa. The phonon analysis shows that the electron–phonon coupling is dominantly enhanced by the intermolecular vibrations of O2 rather than the intramolecular ones. The phonon modes showing the strong electron–phonon coupling were found to be concentrated in the phonon frequency range of 100–150 cm?1 at around the M-point in the Brillouin zone.  相似文献   

8.
The Raman spectra of a naphthalene crystal have been measured at room temperature in the pressure range up to 20 GPa. The pressure shift and Grüneisen parameters for intermolecular and intramolecular phonons have been determined. The maximum rate of the pressure shift for intermolecular phonons is 44 cm?1/GPa, and the rate of the pressure shift for intramolecular phonons lies in the range from 1 to 11 cm?1/GPa for different modes. The pressure dependence of the phonon frequencies for direct and inverse pressure variations has a hysteresis in the pressure range from 2.5 to 16.5 GPa. It has been shown that the linear dependence of the intermolecular phonon frequency on the crystal density has a peculiarity, which indicates a possible phase transition at a pressure of 3.5 GPa. The pressure dependence of intramolecular phonons related to the stretching vibrations of hydrogen atoms exhibits features that are characteristic of intermolecular phonons, which is associated with the influence of shortened distances between the hydrogen atoms of the neighboring molecules on the intermolecular interaction potential.  相似文献   

9.
In this work, the Raman scattering of melamine was studied under high pressure up to 60 GPa. The behavior of the most intensive peaks of the Raman spectrum of melamine, 677 cm?1 and 985 cm?1 modes, and their line widths do not show any phase transition or indication of formation of sp 3 bonds. Comparing the behavior of the line width of the Raman peaks of graphite under pressure and that of melamine leads us to conclude that the s-triasine (C–N) ring is more rigid than the C–C graphite ring. High pressure results with melamine suggest that the direct phase transition g-C3N4 to dense C3N4 phase should occur above 60 GPa.  相似文献   

10.
Ge–Sn compound is predicted to be a direct band gap semiconductor with a tunable band gap. However, the bulk synthesis of this material by conventional methods at ambient pressure is unsuccessful due to the poor solubility of Sn in Ge. We report the successful synthesis of Ge–Sn in a laser-heated diamond anvil cell (LHDAC) at ~7.6 GPa &; ~2000 K. In situ Raman spectroscopy of the sample showed, apart from the characteristic Raman modes of Ge TO (Г) and β-Sn TO (Г), two additional Raman modes at ~225 cm?1 (named Ge–Sn1) and ~133 cm?1 (named Ge–Sn2). When the sample was quenched, the Ge–Sn1 mode remained stable at ~215 cm?1, whereas the Ge–Sn2 mode had diminished in intensity. Comparing the Ge–Sn Raman mode at ~225 cm?1 with the one observed in thin film studies, we interpret that the observed phonon mode may be formed due to Sn-rich Ge–Sn system. The additional Raman mode seen at ~133 cm?1 suggested the formation of low symmetry phase under high P–T conditions. The results are compared with Ge–Si binary system.  相似文献   

11.
The energies of the 4T1g states of Co2+ as a dilute substitutional impurity in MgO relative to the ground Λ6g doublet have been found by low temperature Raman spectroscopy to be two Λ8g states at 305 ± 3 cm?1 and 930 ± 3 cm?1; the remaining Λ7g energy is predicted to be in the 980–1010 cm?1 range the corresponding Λ6g → Λ7g Raman transition being weak and buried in the extensive two-phonon background. A second-order perturbation calculation which couples the spin-orbit states to both Eg and T2g modes of vibration gives a weak but important Jahn-Teller stabilization energy for the Λ8g states.  相似文献   

12.
Abstract

The molybdate‐bearing mineral szenicsite, Cu3(MoO4)(OH)4, has been studied by Raman and infrared spectroscopy. A comparison of the Raman spectra is made with those of the closely related molybdate‐bearing minerals, wulfenite, powellite, lindgrenite, and iriginite, which show common paragenesis. The Raman spectrum of szenicsite displays an intense, sharp band at 898 cm?1, attributed to the ν1 symmetric stretching vibration of the MoO4 units. The position of this particular band may be compared with the values of 871 cm?1 for wulfenite and scheelite and 879 cm?1 for powellite. Two Raman bands are observed at 827 and 801 cm?1 for szenicsite, which are assigned to the ν3(E g ) vibrational mode of the molybdate anion. The two MO4 ν2 modes are observed at 349 (B g ) and 308 cm?1 (A g ). The Raman band at 408 cm?1 for szenicsite is assigned to the ν4(E g ) band. The Raman spectra are assigned according to a factor group analysis and are related to the structure of the minerals. The various minerals mentioned have characteristically different Raman spectra.  相似文献   

13.
The phase transformation in nano‐crystalline dysprosium sesquioxide (Dy2O3) under high pressures is investigated using in situ Raman spectroscopy. The material at ambient was found to be cubic in structure using X‐ray diffraction (XRD) and Raman spectroscopy, while atomic force microscope (AFM) showed the nano‐crystalline nature of the material which was further confirmed using XRD. Under ambient conditions the Raman spectrum showed a predominant cubic phase peak at 374 cm−1, identified as Fg mode. With increase in the applied pressure this band steadily shifts to higher wavenumbers. However, around a pressure of about 14.6 GPa, another broad band is seen to be developing around 530 cm−1 which splits into two distinct peaks as the pressure is further increased. In addition, the cubic phase peak also starts losing intensity significantly, and above a pressure of 17.81 GPa this peak almost completely disappears and is replaced by two strong peaks at about 517 and 553 cm−1. These peaks have been identified as occurring due to the development of hexagonal phase at the expense of cubic phase. Further increase in pressure up to about 25.5 GPa does not lead to any new peaks apart from slight shifting of the hexagonal phase peaks to higher wavenumbers. With release of the applied pressure, these peaks shift to lower wavenumbers and lose their doublet nature. However, the starting cubic phase is not recovered at total release but rather ends up in monoclinic structure. The factors contributing to this anomalous phase evolution would be discussed in detail. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The absorption spectra of CH3OH, CH3OD, CD3OH, and CD3OD as pure liquids and as carbon tetrachloride solutions were measured in the 3,850 – 16,600cm?1 region. In addition to the various combination bands, the higher overtone bands of the hydrogen-bonded OH stretching vibration of self-associated methanols were observed at ~6470, 9300–9700, and 12,200 – 12,700 cm?1 with broad half-widths of ~700, ~1200, and ~1800 cm?1, respectively, and those of the OD stretching vibration, at ~4900, 7200–7400, and 9200–9600 cm?1 with half-widths of ~370, ~700, and ~1200 cm?1, respectively. With the aid of the observed frequencies, we determined the single minimum potential energy curve for the hydrogen-bonded OH and OD stretching vibrations of self-associated methanols. Furthermore, the absorption band due to double excitation of two neighboring OH groups linked together by a hydrogen bond was quantitatively analyzed by using the isotopic isolation technique. The double excitation band of CH3OH as pure liquid was found to appear at 6730 cm?1 with an absorbance of 0.08 at 1 mm light path length.  相似文献   

15.
The measurements of the absolute values of the thermopower and of the relative electrical resistance have been performed for n type Bi2Te3 under hydrostatic pressure up to 9 GPa at room temperature. Under pressures exceeding 5 GPa and up to the phase transition (at 7 GPa), the samples with the charge carrier density below 10?19 cm?3 exhibit an anomalous growth of the thermopower. For the purest sample (n = 10?18 cm?3), the thermopower is as high as +150 μV/K. The pressure dependence of the electrical resistance for n-Bi2Te3 does not exhibit any anomalies up to the pressure corresponding to the phase transition (7 GPa). Thus, the state with the giant thermoelectric efficiency is found in Bi2Te3 under pressure before the phase transition.  相似文献   

16.
Raman spectra of MgB2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼590 cm−1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas, beyond this region, the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼5 GPa exhibits a change in the slope, as well as a “hysteresis” effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB2 may undergo a pressure-induced topological electronic transition.  相似文献   

17.
Abstract

Powder-absorption infrared (IR) spectra of perovskites CaFexTi1?x O3?x/2 (0≤x≤1) annealed at different temperatures were investigated at room temperature in the range 135–2000 cm?1. The spectra change as a function of composition, annealing temperature and structural state (order-disorder of oxygen vacancies). Autocorrelation analysis has been used to determine variations of average line widths of groups of peaks in the primary IR spectra. The band widths increase on increasing Fe content in the region of the structures with disordered oxygen vacancies and they decrease on going through the order-disorder boundary. High degrees of local structural heterogeneity are suggested by the effective line widths of the phases at intermediate compositions. The intensity of bands at ~150 and ~443 cm?1 decreases with increasing Fe content in the compositional range of the disordered structures. Finally, for every annealing temperature, the frequency of the band at ~600cm?1 systematically shifts to higher values on increasing Fe content, these values decreasing again for the fully ordered structures.  相似文献   

18.
Variable-temperature (?150°C to 600°C) and high-pressure (up to ~5 GPa) micro-Raman spectra have been obtained for the mineral wulfenite [lead(II) molybdate(VI), PbMoO4], a main constituent of the artists' pigment, orange molybdate. The spectra were quite similar in both the temperature and the pressure studies, except for broadening and shifting of some peaks. No phase changes were detected, although there is possibly some amorphization beginning at ~600°C. The photoacoustic IR spectrum in the 1950–450 cm?1 region is reported for characterization purposes. The long-term stability of PbMoO4 with respect to extreme changes in both temperature and pressure illustrates the importance of orange molybdate in artwork and protective coatings.  相似文献   

19.
Raman scattering measurements performed between 5 K and 300 K on 2H-TaSe2 reveal new modes which are assigned to the modes of the charge density wave, observed in light scattering due to the Fermi surface induced distortion. The mode at 49 cm?1 of E2g symmetry softens (with concurrent line-width broadening) towards 122 K, the transition temperature from the incommensurate distorted to the undistorted phase. The mode at 82 cm?1 of A1g symmetry appears to be connected with the transition at 90 K from the commensurate to the incommensurate superstructure. The mode at 24.5 cm?1 of E2g shows no temperature dependence and is clearly due to the rigid-layer vibration.  相似文献   

20.
The hysteresises (~0.3–0.4 GPa) of two transitions in natrolite at 0.9 and 1.45 GPa, considerable changes in the Raman spectra, and the appearance of very intense low-frequency mode at 75 cm?1 in the overhydrated phase of high pressure of water medium up to 6.2 GPa are observed for the first time. The dependences of the band frequencies of this phase are nonlinear, due clearly to changes in the positions of H2O in the channels. According to Raman data, fluorapatite placed together with natrolite in a water medium in a diamond anvil cell exhibits no transitions up to 6.2 GPa and displays linear pressure dependences of the band frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号