首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Structure, positional, and thermal parameters of ND4I were studied at high pressures up to 90 kbar and low temperatures down to 10 K using time-of-flight neutron diffraction. The phase transition from a disordered CsCI-type cubic phase ND4I(II) into a recently discovered high pressure phase ND4I(V) was observed at P = 80(5) kbar. Surprisingly, the structure of the high pressure phase V was found to bear a strong resemblance to that of the ambient pressure, low-temperature phase III - tetragonal structure with an antiparallel ordering of ammonium ions, space group P4/nmm. The critical value of the deuterium positional parameter corresponding to the II-V transition is close to the one for the phase transition between the disordered and ordered CsCl-type cubic phases II and IV in other ammonium halides.  相似文献   

2.
Abstract

The structure of the ammonium halides NH4X (X = Cl, Br, I) has been studied under pressure up to 40 GPa by energy dispersive X-ray diffraction using synchrotron radiation. Equations of state and a discussion on the possible structure of phase V will be presented.  相似文献   

3.
Structural changes in the deuterated ammonium halogenides ND4Br and ND4Cl have been studied by neutron time-of-flight diffraction up to pressures of 45 and 35 kbar, respectively. Data on the equations of state and pressure dependence of the deuterium position parameter have been obtained. A comparison with the hydrogen-containing analogs showed that isotopic substitution of deuterium for hydrogen affects only slightly the compressibility of the systems under study, although the effect is noticeable for ND4Cl. It has been established that the order-disorder transition from the phase with random deuterium distribution (CsCl cubic structure, space group Pm3m) to the ordered phase (same structure, space group ) occurs in both compounds at the same critical value of the position parameter u=0.153±0.002, which is apparently the same for all ammonium halogenides, and, possibly, for other systems of this structural type as well. Fiz. Tverd. Tela (St. Petersburg) 40, 142–146 (January 1998)  相似文献   

4.
Abstract

Time dependencies p(t)V,T, nd V(t),P,T, at room temperature as castor oil phase transition indicators were investigated. The time after which the transition takes place, within the pressure range from 0.36 up to 1.05 GPa, strongly depends on pressure. Its minimum, at about 0.6 GPa is equal to 15 hours. Under the same conditions of experiment the largest change in volume (about ?2%) was detected. The relative changes of volume on pressure for the normal state of castor oil and for its new high pressure state have been found to be approximately the same. A large hysteresis of volume changes after the phase transition has also been observed.  相似文献   

5.
Abstract

FTIR spectra of NH4Cl, NH4Br and NH4I have been measured in the range of 600 - 4800 cm?1 at pressures up to 30 GPa at 135 K. The spectra show significant changes at the phase transition IV - V, particularly the splitting of v4 in phase V is clearly demonstrated.  相似文献   

6.
Abstract

Vibrational spectra of NH4Br at high pressures up to 4·5GPa have been studied by means of incoherent inelastic neutron scattering using sapphire anvil high pressure cell technique. Libration mode splitting was investigated in the vicinity of the orientation phase transition (Ptr = 2·7 GPa) and this effect disappears if pressure is less or higher than Ptr. This effect is explained in terms of two-well asymmetric potential.  相似文献   

7.
Abstract

A phase transition from Ca(OH)2 I (portlandite) to Ca(OH)2 II at high pressure and temperature has been confirmed, using in situ x-ray diffraction in a multianvil high pressure device (DIA). The structure was determined at 9.5 GPa and room temperature from data collected after heating the sample at 300°C at 7.2 GPa in a diamond anvil cell. Both the Le Bail fit and preliminary Rietveld refinement suggest that the new phase, which reverts to Ca(OH), I during pressure release, has a structure related to that of baddeleyite (ZrO1); it is monoclinic (P21/c) with a= 4.887(2), b= 5.834(2), c = 5.587(2), β = 99.74(2)°. The coordination number of Ca increases from six to seven (5 + 2) across the transition. At 500°C, the phase boundary is bracketed at 5.7 ± 0.4 GPa by reversal experiments performed in the DIA.  相似文献   

8.
The line width of the deuteron magnetic resonance in polycrystalline ND4Cl, ND4Br, and ND4I has been measured from 300°K down to 115°K. Below 200, 172, and 140°K in ND4Cl, ND4Br, and ND4I, respectively, the line rapidly broadens. In addition, the I ? II transition of ND4I causes a change of line width. The observed line widths agree with those calculated by the present writers from theVan Vleck second moment formula assuming a Gaussian line shape. For this agreement, in the phases II and III of ND4Cl and in the phase I of ND4I the deuteron-halogen interactions should be taken into account, whereas in the phases II and III of ND4Br and ND4I they should be omitted.  相似文献   

9.
Abstract

Copper oxide has been studied at high pressure up to 50 GPa. A monoclinic structure was compatible with the measurements at all pressures, and no phase change was observed. A bulk modulus, B0, = 98 GPa, and its pressure derivative B′0 = 5.6 was obtained.  相似文献   

10.
Abstract

Plutonium monoselenide was studied under high pressure up to 47 GPa, at room temperature, using a diamond anvil cell in an energy dispersive X-ray diffraction facility. At ambient pressure, PuSe has the NaC1-type (B1) structure. The compound has been found to undergo a second-order crystallographic phase transition at around 20 GPa. This phase can be described as a distorted B1 structure, with a rhombohedral symmetry. PuSe transforms to a new phase at around 35 GPa, which can be indexed in the cubic CsCl-type (B2). The volume collapse at this phase transition is 11%. When releasing pressure, we observed a strong hysteresis to the inverse transformation down to 5 GPa. From the pressure-volume relationship, the bulk modulus has been determined to B 0 = 98 GPa and its pressure derivative as B 0 = 2.6. These results are compared to those obtained with other actinide monmictides and monochalcogenides.  相似文献   

11.
The thermal properties and structure of (ND4)2WO2F4 crystals are investigated. It is established that deuteration does not lead to a change in the symmetry of the initial phase Cmcm but considerably decreases the extent of its disordering, which, in turn, brings about a substantial decrease in the phase transition entropy. Apart from the anomalies associated with phase transitions characteristic of the protonic compound, the heat capacity exhibits two additional anomalies. Analysis of the phase diagram of the deuterated crystal reveals a triple point at a pressure p = 0.18 GPa, which is predicted for (NH4)2WO2F4 at about 0.7 GPa.  相似文献   

12.
X-ray diffraction (XRD) experiments have been carried out on quartz-like GaPO4 at high pressure and room temperature. A transition to a high pressure disordered crystalline form occurs at 13.5 GPa. Slight heating using a YAG infrared laser was applied at 17 GPa in order to crystallize the phase in its stability field. The structure of this phase is orthorhombic with space group Cmcm. The cell parameters at the pressure of transition are a =7.306?, b =5.887? and c =5.124?. Received: 7 October 1997 / Received in final form: 17 November 1997 / Accepted: 18 November 1997  相似文献   

13.
Abstract

Tb2(MoO4)3 has been studied by Raman spectroscopy under hydrostatic pressure up to 9 GPa at room temperature. The measurements reveal two phase transitions, one at around 2 GPa and another one above 5 GPa. The first phase transition is associated with an increase in the coordination number of Mo while the second is probably a transition to an amorphous phase in which only a wide band originating from Mo-O vibrations remains. This behaviour is irreversible as the Raman spectrum of the initial structure is not recovered at atmospheric pressure.  相似文献   

14.
The effect of pressure on the Raman modes in TeO2 (paratellurite) has been investigated to 30GPa, using the diamond cell and argon as pressure medium. The pressure dependence of the Raman modes indicates four pressure-induced phase transitions near 1 GPa, 4.5 GPa, 11 GPa and 22 GPa. Of these the first is the well studied second-order transition fromD 4 4 symmetry toD 2 4 symmetry, driven by a soft acoustic shear mode instability. The remarkable similarity in the Raman spectra of phases I to IV suggest that only subtle changes in the structure are involved in these phase transitions. The totally different Raman spectral features of phase V indicate major structural changes at the 22GPa transition. It is suggested that this high pressure-phase is similar to PbCl2-type, from high pressure crystal chemical considerations. The need for a high pressure X-ray diffraction study on TeO2 is emphasized, to unravel the structure of the various high pressure phases in the system.  相似文献   

15.
Abstract

Energy Dispersive X-ray Diffraction (EDXD) was performed at room temperature to gather structural data on CaS between approximately 1.7 GPa to nearly 150GPa. In these experiments, CaS retained the B1 structure up to approximately 40 GPa above which it began to transform to the B2 structure. The B2 structure remained stable to the highest pressure reached, 149 GPa, where the relative volume V/V0 was 0.490. Previous studies on CaS extended only up to 52 GPa, which is barely 10 GPa after the B1 phase changes to the B2 structure. Thus it was not possible to accurately extrapolate the equation of state (EOS) for the B2 phase region to significantly higher pressures. In the present study EOS data for CaS was collected to 150 GPa and no other structural change was observed. EOS parameters for the B1 and B2 phase regions agree well with values reported in the literature.  相似文献   

16.
Abstract

The crystal structure of ThS2, ThSe2 and US2 has been investigated for pressure up to 60GPa using x-ray powder diffraction. The bulk moduli are 175(10), 155(10) and 155(20) GPa, respectively. A pressure-induced phase transformation occurs at about 40 GPa for ThS2, 30 GPa for ThSe2 and 15 GPa for US2. The results for ThSe2 indicate that its high-pressure phase has a monoclinic structure. The same structure is compatible with the observed high-pressure spectra of ThS2 and US2. However, the crystal system assignment is less certain for these compounds.  相似文献   

17.
Abstract

X-ray absorption spectroscopy was applied to study the pressure-induced valence changes in EuS and SmTe, which are divalent semiconductors of NaCl-type structure at ambient pressure. In both systems the Eu-LIII and Sm-LIII thresholds exhibit the onset of intermediate valencies of the rare earth ions at 15 GPa and 4 GPa, respectively. In EuS, one observes only a small increase of the valency within the investigated pressure range (36 GPa), while in SmTe a full transition to trivalency is observed above 20 GPa. The transition to the CsCl-Type high-pressure phase has no significant influence on the valence in both systems.  相似文献   

18.
The energy of the transition I?II of ND4Cl and ND4Br was measured by using a direct differential calorimetric method. The results 1024 cal/mole for ND4Cl and 847 cal/mole for ND4Br were obtained. The accuracy was estimated to be about 2%. The approximate transition temperatures 169°C for ND4Cl and 118°C for ND4Br were observed.  相似文献   

19.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

20.
Abstract

High-pressure X-ray diffraction using synchrotron radiation has been performed on UP1-x -Sx (X=0.1; 0.25; 0.4) up to 53 GPa UP1-x Sx is a solid solution with a B1 (NaCl) structure. For all compositions a second order phase transition is observed around 10 GPa to a distorted B1 structure of rhombohedral symmetry. For UP1-x Sx with x 0.25 a second phase transition is observed, which takes place in the region of 35 GPa This phase transition occurs when the nearest U-U distance reaches the Hill limit of 330–340 pm. The high-pressure phase seems to have orthorhombic or even monoclinic symmetry. It has some similarities to the high pressure phase of UP. UP1-x Sx 4 shows only weak indications for an additional phase at 53 GPa. In conclusion, we observe that the second phase transition and the bulk modulus B, in UP shift to higher pressure, when phosphorus is replaced by sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号