首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The onset critical temperature T co, of CaLaBaCu3O7, is measured as a function of pressure by means of a cryogenic diamond anvil cell. We find ?T co/?p = 0.14 ± 0.02K/GPa. The pressure dependence of the upper critical field B c2 as a function of pressure is determined for T/Tc , = 0.96. From this we found the corresponding volume dependence of the number of charge carriers to be much smaller than the value derived from Hall effect measurements in YBa2Cu3O7.

Les dérivées par rapport à la pression de la température critique supérieure Tco , (avec ?T co,??p = 0.14 ± 0.02K/GPa) et du champs critique B c2 à T/Tc , = 0.96 ont été déterminé á l'aide d'une presse à diamants. Pour le composé CaLaBaCu3O7, la variation de la densité de charges en fonction du volume est beaucoup plus faible que celle détermiée par effet Hall dans YBa2Cu3O7.  相似文献   

2.
Abstract

Copper oxide has been studied at high pressure up to 50 GPa. A monoclinic structure was compatible with the measurements at all pressures, and no phase change was observed. A bulk modulus, B0, = 98 GPa, and its pressure derivative B′0 = 5.6 was obtained.  相似文献   

3.
Abstract

By means of a four-point resistivity method the critical temperature (Tc) of the tetragonal high temperature super-conductor CaLaBaCu3Ox was studied for pressures up to 9 GPa. The pressure dependence of Tc is small and negative, dTc/dp = - 0.77 K/GPa, and agrees with the general trend observed in previous data.  相似文献   

4.
Abstract

Neptunium and plutonium monosulfides were studied under high pressure up to ~60 GPa using a diamond anvil cell in an energy dispersive X-ray diffraction facility. The compounds, of cubic rock salt structure type at ambient pressure, do not show any crystallographic phase transition in the domain of investigation. From the pressure-volume relationship, we determined bulk moduli of 92 and 120 GPa with pressure derivatives of 4.6 and 4.1 for NpS and PUS respectively.  相似文献   

5.
The structural transformation of cesium lead iodine (CsPbI3) has been investigated in diamond anvil cells up to ~15 GPa at room temperature by employing synchrotron radiation X-ray diffraction and Raman spectroscopy. One reversible transformation from orthorhombic (Pnma) to monoclinic (P21/m) phase has been observed at 3.9 GPa. Isothermal pressure–volume relationship of orthorhombic CsPbI3 is well fitted by the third-order Birch–Murnaghan equation of state with K0 = 14(3) GPa, K′0 = 6(2) and V0 = 891(7) Å3. The ultralow value of bulk modulus K0 demonstrates the high compressible nature of CsPbI3, similar to those of organic–inorganic metal halide perovskites. The present results provide essential information on the intrinsic properties and stability of CsPbI3, which may be applied in photovoltaic devices.  相似文献   

6.
The effect of pressure on the Raman modes in TeO2 (paratellurite) has been investigated to 30GPa, using the diamond cell and argon as pressure medium. The pressure dependence of the Raman modes indicates four pressure-induced phase transitions near 1 GPa, 4.5 GPa, 11 GPa and 22 GPa. Of these the first is the well studied second-order transition fromD 4 4 symmetry toD 2 4 symmetry, driven by a soft acoustic shear mode instability. The remarkable similarity in the Raman spectra of phases I to IV suggest that only subtle changes in the structure are involved in these phase transitions. The totally different Raman spectral features of phase V indicate major structural changes at the 22GPa transition. It is suggested that this high pressure-phase is similar to PbCl2-type, from high pressure crystal chemical considerations. The need for a high pressure X-ray diffraction study on TeO2 is emphasized, to unravel the structure of the various high pressure phases in the system.  相似文献   

7.
The present paper reports the results of in situ Raman studies carried out on nano-crystalline CeO2 up to a pressure of 35 GPa at room temperature. The material was characterized at ambient conditions using X-ray diffraction and Raman spectroscopy and was found to have a cubic structure. We observed the Raman peak at ambient at 465 cm?1, which is characteristic of the cubic structure of the material. The sample was pressurized using a diamond anvil cell using ruby fluorescence as the pressure monitor, and the phase evolution was tracked by Raman spectroscopy. With an increase in the applied pressure, the cubic band was seen to steadily shift to higher wavenumbers. However, we observed the appearance of a number of new peaks around a pressure of about 34.7 GPa. CeO2 was found to undergo a phase transition to an orthorhombic α -PbCl2-type structure at this pressure. With the release of the applied pressure, the observed peaks steadily shift to lower wavenumbers. On decompression, the high pressure phase existed down to a total release of pressure.  相似文献   

8.
9.
Abstract

Ni-H and Re-H binary systems have been studied at room temperature by X-ray diffraction in a diamond-anvil cell. The formation of the hydrides NiH and ReHo.4 with no change in the types of the host metal lattices was observed through the expansion of the host lattices. No structure changes were observed in the metal sub-lattice of either hydride under increasing pressure and the equations of state have been obtained to 123GPa. The difference in the partial hydrogen volume as a function of pressure between the Ni-H and Re-H systems can be understood with reference to the behaviour of conduction electrons. The pressure dependence of the partial hydrogen volume in these hydrides supports the hypothesis of the apparent common-volume behaviour of hydrogen in a metallic environment.  相似文献   

10.
11.
Abstract

The melting curve of NaCl0.5Br0.5 has been measured under pressure up to 4.5 GPa. The melting temperatures of Ag and NaCl have been used to determine the pressure in the sample at its melting temperature.  相似文献   

12.
Abstract

The high-pressure crystal structures of the compounds UX, where X = N, P, As and Sb, have been studied using X-ray diffraction in the pressure range up to about 60 GPa Rhornbohedral distortions are observed for UN and Up above 29 GPa and lO GPa, respectively. In Up a further transformation to an orthorhombic phase occurs at 28 GPa. UAs and USb transform to the CsCl structure at 20 GPa and 9 GPa, respectively. The latter transformations show a considerable hysteresis when the pressure is released. The scaling behaviour of the bulk modulus has been studied. It is confirmed that a log-log plot of bulk modulus versus specific volume for the cubic phases gives a straight line with a slope near ? 5/3.  相似文献   

13.
Results of X-ray powder diffraction measurements up to 35 GPa carried out on GaCMn3 are presented. GaCMn3 does not undergo any structural transition in this pressure region. However, the pressure–volume data can be fitted to two straight line segments in the pressure regions; one from 0 to 5 GPa and another from 5 to 30 GPa respectively.  相似文献   

14.
In situ X-ray diffraction measurements on germanium were conducted in the pressure range of 5-11 GPa and temperatures up to 950 K. Using our data a better defined P-T diagram for germanium is presented. The coordinates of the triple point between GeI-GeII-GeL have been determined to a better degree of precision. The onsets of the GeI-GeII transition were found both under hydrostatic and non-hydrostatic conditions. Anisotropy of thermal expansion coefficient for the GeII is characterized from the c/a ratios in the temperature interval 473-823 K. Phases GeIII and GeIV are shown to be metastable forms of germanium.  相似文献   

15.
Abstract

Luminescence spectra from Eu3+ ion in C-type Eu2O3 under high pressures have been obtained. The spectral shifts can be used to study the effect of pressure on the spin-orbit and the Coulomb interactions of the 4f electrons, which are correlated with expansion of the 4f-electron wave functions. This expansion with the application of pressure results in both the variation of the electronegativity and radius of the Eu3+ ion and, ultimately, the phase transformation from C-to B-type Eu2O3. Therefore, core 4f-electrons can thus be thought of as quasivalence electrons.  相似文献   

16.
Abstract

Luminescence spectra from Eu3 + ion in B-type (monoclinic) 2O3 powder have been recorded at room temperature as a function of pressure using a diamond anvil cell. Changes in the spectral pattern of the Eu3 + ion emission at about 4 GPa indicated that a phase transition to the A-type (hexagonal) structure had taken place. Upon release of the applied pressure, the B-type structure was regained with hysteresis. The spectral shifts with pressure have been used to study the effect of pressure on the spin-orbit interaction of the 4f electrons in the Ed + ion. The relationship between the relative changes in the spin-orbit coupling constant, ζ4f, and the volume accompanying the phase transition is also discussed.  相似文献   

17.
Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.  相似文献   

18.
H. Manaka  M. Nishi  I. Yamada 《高压研究》2013,33(3-6):171-177
Abstract

Neutron scattering experiments on the two-dimensional Heisenberg ferromagnets Cs2 CuF4 and K2CuF4 have been performed around 2 ~ 3 GPa over 1·4–15 K. At ambient pressure both the intralayer and the interlayer exchange interactions in these two compounds are ferromagnetic. At about 2 GPa, the interlayer exchange coupling in Cs2 CuF4 is found to change from ferromagnetic to antiferromagnetic, while the ferromagnetic intralayer exchange interaction is maintained. Contrary to Cs2CuF4, the ferromagnetism in K2Cuf4 is not destroyed by pressure up to 9 GPa, that was confirmed in the early study of the magnetic susceptibility measurements.  相似文献   

19.
Abstract

We report Raman-scattering studies of SnGeS3 under hydrostatic pressures up to 19.5 GPa. An assignment to internal-external modes is proposed, based on the pressure slopes obtained. Our data show evidence for two critical pressures, one around 7 GPa and a second one around 12 GPa. The material renders itself Raman inactive at 19.5 GPa. The observed changes are reversible upon pressure release.  相似文献   

20.
A comparative study of electronic structure and magnetic properties of SrCrO3 and SrMoO3 has been carried out using FPLAPW method with density-functional theory. The calculated results suggest that both compounds are nonmagnetic (NM) metal in cubic structures at room temperature, and they exhibit very similar band structure and electronic properties except more extend Mo 4d orbitals than Cr 3d electronic states. However, the electronic structure and magnetic properties exhibit remarkable differences between them in the low temperature phases. SrCrO3 is with a C-AFM ground state with magnetic moment of 1.18μB/Cr in the tetragonal structure, while SrMoO3 is with a NM ground state in the orthorhombic structure. It is assumed that the extend 4d orbitals may be the reason which results in NM solution at low temperature phase of SrMoO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号