首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Summary Reactions of glyoxal bis(morpholineN-thiohydrazone), H2gbmth, with NiCl2·6H2O, Ni(OAc)2·4H2O, Ni(acac)2· H2O, CuCl2·2H2O, Cu(OAc)2·H2O, Cu(acac)2, CoCl2· 6H2O, Co(OAc)2·4H2O and Co(acac)2·2H2O yield complexes of the type [M(gbmth)], [M=NiII, CuII or CoII]. Diacetyl reacts with morpholineN-thiohydrazide in the presence of nickel salts to yield [NiII(dbmth)], [NiII(dmth)(OAc)]H2O and [NiII(Hdmth)(NH3)Cl2] involving N2S2 and NSO donor ligands. Copper and cobalt complexes of N2S2 and NSO donor ligands with compositions [CuII(dbmth)], [CoII(dbmth)]·4H2O and [CoII(H2dbmth)]Cl2, have been isolated. The compounds have been characterised by elemental analyses, magnetic moments, molar conductance values and spectroscopic (electronic and infrared) data.  相似文献   

2.
Four tridentate ONS ligands, namely 2-hydroxyacetophenonethiosemicarbazone (H2L1), the 2-hydroxyacetophenone Schiff base of S-methyldithiocarbazate (H2L2), the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-methyldithiocarbazate (H2L3), and the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-benzyldithiocarbazate (H2L4), and their complexes of general formula [Ni(HL1)2], [ML] (M?=?NiII or CuII; L?=?L1, L2, L3 and L4), [Co(HL)(L); L?=?L1, L2, L3 and L4] and [ML(B)] (M?=?NiII or CuII; L?=?L2 and L4; B?=?py, PPh3) have been prepared and characterized by physico-chemical techniques. Spectroscopic evidence indicates that the Schiff bases behave as ONS tridentate chelating agents. X-ray crystallographic structure determination of [NiL2(PPh3)] and [CuL4(py)] indicates that these complexes have an approximately square-planar structure with the Schiff bases acting as dinegatively charged ONS tridentate ligands coordinating via the phenoxide oxygen, azomethine nitrogen and thiolate sulfur atoms. The electrochemical properties of the complexes have been studied by cyclic voltammetry.  相似文献   

3.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

4.
Summary CuII, NiII, CoII, ZnII and PdII complexes of tridentate Schiff base ligands derived from the condensation of benzoic acid hydrazides with 2-aminonicotinaldehyde have been prepared and characterized. For M=Cu, Ni, Co and Zn the complexes were formulated as [M(ligand)(H2O)X] (X=Cl, Br), with a distorted octahedral geometry and tridentate Schiff base ligands. The Pd complexes were formulated as Pd(ligand)Cl2, with square planar geometries and bidentate Schiff base ligands. The e.s.r. spectra of the CuII complexes are discussed.  相似文献   

5.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

6.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

7.
Summary A series of metal (Cu, Ni, Zn, Cd and Pd) complexes of a Schiff base ligand derived from S-benzyldithiocarbazate and p-nitrobenzaldehyde were prepared and characterized. The Schiff base acts as a single negatively-charged bidentate ligand forming stable neutral metal complexes. Magnetic and spectroscopic data suggest a square planar structure for the CuII, NiII and PdII chelates. Single X-ray diffraction analysis of the NiII chelate established that the Schiff base loses a proton from its tautomeric thiol form and coordinates to the metal via the thiolato sulfur and -nitrogen. The geometry around NiII is square planar with two equivalent Ni-N and Ni-S bonds; the two nitrobenzyl rings and the coordination plane are almost isoplanar, giving a delocalized electronic system.  相似文献   

8.
The reaction of 3-formylsalicylic acid with 1,2-bis(o-aminophenylthio)ethane yielded a Schiff base with eight donor centres N2S2O4 of which the inner compartment is of an N2S2O2 type and the outer is of the O2O2 type. The base forms several mononuclear homo- and hetero-dinuclear complexes: e.g. mononuclear CuII, NiII and dinuclear CuII, NiII, UO2 VI complexes. Hetero-dinuclear complexes {[M]M}, where M = the inner metal ion CuII, NiII and M = the outer metal ion PdII, UO2 VI are also reported. The complexes were characterised by elemental analyses, spectral, thermal and magnetic measurements. Dicopper and dinickel complexes exhibit subnormal magnetic moments showing spin pairing between two metal centres, via the phenolato oxygen, whereas other mono-copper and mono-nickel complexes (both mononuclear and hetero-dinuclear) show the expected magnetic behaviour for 1e and 2e, respectively. The e.s.r. spectra of copper complexes also support the above behaviour.  相似文献   

9.
Summary Reaction of one mole of acetylacetone with two moles of 4-phenylthiosemicarbazide yields the unusual Schiff base, MeC(=N-NHCSNHPh)CH2C(=NNHCSNHPh)Me. APT = H2L) acetylacetone bis(4-phenylthiosemicarbazone). The complexes of CoII, NiII, CuII, ZnII and UVIO2 have been prepared and characterized by analytical, i.r., electronic spectral and magnetic measurements. The CoII, NiII and CuII complexes have been assigned square-planar stereochemistry on the basis of magnetic and spectroscopic studies. The ligand is a neutral or dibasic quadridentate SNNS donor as revealed by i.r. spectral studies.  相似文献   

10.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

11.
Summary N-Cyano-N-methyl-N(2-[(5-methyl-1H-imidazol-4-yl)-methylthio] ethyl) guanidine cimetidine (CM), complexes with CoII, NiII and CuII are described. The compounds are of stoichiometry [M(CM)2]SO4 · nH2O [M = CoII, NiII or CuII; n = 3,3 or 4, respectively], [M(CM)2](ClO4)2 [M = CoII or NiII], [M(CM)2]Cl2 · nH2O [M=CoII, NiII or CuII; n = 1, 2, or 2, respectively] and [Cu(CM)SO4] · 2H2O. The electronic spectra of the compounds in solid state, magnetic susceptibilities and i.r. and e.p.r. spectra were studied. Octahedral environments are proposed for the complexes: [M(CM)2]SO4·nH2O, [M(CM)2](ClO4)2, [Ni(CM)2]Cl2 · 2H2O, [Cu(CM)2]Cl2 · 2H2O and [Cu(CM)SO4] · 2H2O and a tetrahedral structure for [Co(CM)2]Cl2 · H2O.  相似文献   

12.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

13.
Summary New nickel(II) and copper(II) complexes of general formulae [M(Ap-SR)] and [Ap-SR)B] (Ap-SR = dianionic forms of the Schiff bases of 2-hydroxyacetophenone and S-alkyl esters of dithiocarbazic acid; M = NiII or CuII; R = Me or CH2Ph; B = py, phen or dipy have been synthesized and characterized by a variety of physicochemical techniques. Magnetic and spectroscopic data support an oxygen-bridged binuclear structure for the [M(Ap-SR)] complexes. The [M(Ap-SR)py] complexes are four-coordinate and square planar, whereas the [M(Ap-SR)B] complexes (B = phen or dipy) are five-coordinate and probably trigonal bipyramidal. The [Cu(Ap-SR)B] complexes (B = py, phen or dipy) obey the Curie-Weiss law over the 298-93 K range.The structure of the [Ni(Ap-SMe)py] complex has been determined by X-ray crystallography. It has an approximately square-planar structure in which the doubly-deprotonated Schiff base is coordinated to the NiII ion via the azomethine N atom, the phenolic O atom and the thiolato S atom. The fourth coordination position around the NiII ion is occupied by the N of the pyridine ligand.  相似文献   

14.
A new series of hexacoordinate cobalt(II), nickel(II) and copper(II) complexes of 5-(2-carboxyphenylazo)-2-thiohydantoin HL having formulae [LM(OAc)(H2O)2] · nH2O (M = CoII, CuII and NiII), [LMCl(H2O)2] · nH2O (M = CoII and NiII), [LCuCl(H2O)]2 · 2H2O, [LCu(H2O)3](ClO4) and [LCu(HSO4)(H2O)2] were isolated and characterized by elemental analyses, molar conductivities and magnetic susceptibilities, and by i.r., electronic and e.s.r. spectral measurements, as well as by thermal (t.g. and d.t.g.) analyses. The i.r. spectra indicate that the ligand HL behaves as a monobasic tridentate towards the three divalent metal ions via an azo-N, carboxylate-O and thiohydantoin-O atom. The magnetic moments and electronic spectral data suggest an octahedral geometry for CoII complexes, distorted octahedral geometry for both NiII and CuII complexes with a dimeric structure for [LCuCl(H2O)]2 · 2H2O through bridged chloro ligands. The X-band e.s.r. spectra reveal an axial symmetry for the copper(II) complexes with unsymmetrical Ms = ± 1 signal and G-parameter less than four for the dimeric [LCuCl(H2O)]2 · 2H2O. The thermogravimetry (t.g. and d.t.g.) of some complexes were studied; the order and kinetic parameters of their thermal degradation were determined by applying Coats–Redfern method and discussed.  相似文献   

15.
Summary Acetylacetone bis-benzoylhydrazone (PhCONHN=CMe)2 CH2(LH2) and acetylacetone bis-isonicotinoylhydrazone (NC5H4CONHN=CMe)2CH2(LH2) complexes of the types [ML] and [ML] (M = CoII, NiII, CuII or ZnII) have been prepared and characterized. All the complexes are non-electrolytes and the cobalt(II) complexes are lowspin, the nickel(II) complexes are diamagnetic and the copper(II) complexes are paramagnetic. The ligands chelate via two C=N groups and two deprotonated enolate groups. The e.s.r. spectra of the copper(II) complexes indicate a tetragonally distorted dimeric structure. The X-ray diffraction parameters for [CoL] and [NiL] correspond to a tetragonal crystal lattice.  相似文献   

16.
A series of new Schiff base complexes of FeIII, CoII, NiII and CuII containing Ph3P has been prepared and characterised. The Schiff bases have been prepared by the condensation of salicylaldehyde and naphthaldehyde with the appropriate aniline. The complexes have been characterised by analytical, spectral (i.r., electronic, magnetic, e.p.r., 1H-n.m.r.) and electrochemical studies. The new complexes have been used as catalysts for aromatic coupling reactions. Higher catalytic activity has been observed for NiII compared to the other complexes.  相似文献   

17.
Summary Magnetic susceptibilities of the biacetyldihydrazone (BdH) complexes [M(BdH)3](NO3)2 (M = CoII, NiII, CuII or ZnII), [Fe(BdH)3](NO3)3, [M(BdH)3](Ni(dto)2] (M = CoII, NiII or ZnII; dto = dithiooxalate), [(BdH)2Cu(dto)Ni(dto)] and [Fe(BdH)3]2[Ni(dto)2]3 have been studied in the 4.2–295 K range. ZnII complexes are diamagnetic, and complexes of NiII, CuII and FeIII obey the Curie-Weiss law. The CoII complexes behave anomalously and the results are interpreted in terms of a high spinlow spin equilibrium.  相似文献   

18.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

19.
Summary The synthesis and coordination behaviour of 1-allylbenzotriazole (ABT), containing both -donating heterocyclic ring nitrogen(s) and a -bonding olefinic group, has been studied by complexation with CoII, NiII, CuII, CuI and AgI salts. The solid complexes M(ABT)2X2 (M=Co, Ni or Cu and X=a counterion) and M(ABT)X (M=Cu or Ag and X=Br, I, or NO3) have been characterised by1H-n.m.r. (representative CuI species) and other physical data. Different modes coordination for the title ligand have been proposed based upon i.r. data which indicate the participation of a -donating ring nitrogen only in complexes with bivalent metal salts, and the involvement of both the ring nitrogen and the allylic olefinic component in bonding to a monovalent metal ion.1H-n.m.r. data are qualitatively commensurate with participation of the allyl group in monovalent metal complexes.  相似文献   

20.
A novel series of 16-membered binuclear complexes of octaazatetraimine ligand, [M = MnII, CoII, NiII, CuII and ZnII; X = Cl or NO3] have been synthesized by metal template condensation reactions of o-phenylenediamine with N,N′-diacetylhydrazine in 1:1:1 molar ratio in methanol. The proposed stoichiometry and the bonding of the macrocyclic moiety to metal ions along with the overall stereochemistry have been derived from the results of elemental analyses, magnetic susceptibility, conductivity data and the spectral data revealed from FT-IR, , ESI mass, UV–visible studies. An octahedral geometry has been envisaged for MnII, CoII, and NiII complexes while a slight distortion in octahedral geometry has been noticed for CuII complexes. The low conductivity data of all the complexes suggest their non-ionic nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号