首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high pressure behavior of gallium phosphide, GaP, has been examined using the synchrotron X-ray diffraction technique in a diamond anvil cell up to 27?GPa and 900?K. The transition from a semiconducting to a metallic phase was observed. This transition occurred at 22.2?GPa and room temperature, and a negative dependence of temperature of this transition was found. The transition boundary was determined to be P (GPa)?=?22.6???0.0014?×?T (K).  相似文献   

2.
Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.  相似文献   

3.
High-pressure Raman spectroscopic and X-ray diffraction experiments of barite, BaSO4, were carried out in a diamond anvil cell up to 25?GPa at room temperature. On the basis of the changes in the diffraction patterns and the variation of lattice parameters with pressure, it is inferred that barite undergoes a phase transformation at 10?GPa. The phase transition accompanies the change in the force constant of vibrational modes in barite. Further compression beyond the phase transition causes the distortion of SO4 tetrahedron as indicated by the splitting in the SO4 stretching modes. Both X-ray and Raman data support that the phase transition in BaSO4 is reversible. The compression data yield a bulk modulus of 63?±?2?GPa for barite. Barite shows anisotropic compressibility along three crystallographic axes with c being the most compressible axis.  相似文献   

4.
ABSTRACT

The phase transitions and equation of state measurements were carried out on rare earth metal Holmium (Ho) to 282?GPa using toroidal diamond anvils thereby doubling the pressure range to which it has been studied previously. The first set of experiment employed standard beveled diamond anvils utilizing copper as an x-ray pressure standard to 217?GPa. The second set of experiment employed toroidal diamond anvils utilizing platinum as an x-ray pressure standard to 282?GPa. The recently proposed 16-atom orthorhombic structure (oF16) appeared to be stable between 103 and 282?GPa. The scaled axial ratio (c/a) shows a narrow range of variation of 1.58?±?0.05 for the five known crystalline phases of Ho to 282?GPa. The experimental equation of state of Ho is presented up to a threefold volume compression V/Vo?=?0.322.  相似文献   

5.
Magnetization isotherms of the Fe64Ni36 Invar alloy have been measured under pressure up to 5.3?GPa in magnetic field up to 5?T using a diamond anvil cell and SQUID magnetometer. The unambiguous change of the pressure parameter dlnMS/dP (from ?9 to ?13×10?2?GPa?1) has been observed in a narrow pressure interval from 2.5 to 3.5?GPa at all temperatures in the range from 5 to 300?K. The pressure interval, where the sharp decrease in magnetization was observed, coincides with the critical pressures of the pressure-induced decrease in Fe-moment that were determined by the X-ray Magnetic Circular Dichroism and the X-ray Emission Spectra studies, recently. The pronounced decrease in the Curie temperature of the Fe64Ni36 alloy under pressure, dTC/dP = ?44 ±2?K/GPa, has been confirmed.  相似文献   

6.
ABSTRACT

The effects of pressure and temperature on the lattice constants and thermal expansion coefficients of Indium were studied up to 18.6?GPa and 506?K based on in situ X-ray diffraction method with an externally heated diamond anvil cell. The results show that the measured axial ratio (c/a) decreases with increasing temperature and its temperature dependence decreases with increasing pressure. The thermal expansion coefficient of the a-axis decreases with increasing pressure up to 7?GPa and remains almost constant above 7?GPa, whereas that of the c-axis increases monotonously with pressure and changes from negative to positive at around 7?GPa. The observed behavior suggests that temperature reduces the tetragonal distortion on the lattice, and its effect is dominant below 7?GPa; in contrast, pressure enhances lattice distortion, and tends to have a stronger effect above 7?GPa.  相似文献   

7.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

8.
Change in the crystal structure of the BiFeO3 multiferroic at high pressures up to 70 GPa in a diamond anvil cell has been studied by the method of synchrotron x-ray diffraction at room temperature. The experiment has been carried out under hydrostatic conditions with helium as a pressure-transferring medium. An anomaly has been observed in the behavior of the structural parameters at pressures P c ≈ 40?50 GPa. This anomaly correlates with the effect of the magnetic collapse of iron moments revealed in this pressure range. It has been found that the bulk compression modulus is equal to B 0 = (75.5 ± 15.5) GPa in the interval 0 < P < P c and is almost quadrupled to a value of B = (292 ± 9) GPa in the interval P > P c. When the pressure decreases, the behavior of the structural parameters is completely reversible in correlation with the reversibility of the magnetic transition. The “diffuseness” of the structural transition in pressure is explained by thermal fluctuations between the high-and low-spin states of Fe3+ ions in the transition region.  相似文献   

9.
The high-pressure behaviour of zinc sulphide, ZnS, has been investigated, using an in situ X-ray powder diffraction technique in a diamond anvil cell, at pressures and temperatures up to 35 GPa and 1000 K, respectively. The pressure-induced phase transition from a zincblende (B3) to a rocksalt (B1) structure was observed. This transition occurred at 13.4 GPa and at room temperature, and a negative dependence on temperature for this transition was confirmed. The transition boundary was determined to be P (GPa) = 14.4 ? 0.0033 × T (K).  相似文献   

10.
The optical absorption spectra from bismuth ferrite (BiFeO3) have been studied at high pressures up to 60 GPa in diamond anvil cells. An electronic transition at which the energy of the optical absorption edge decreases sharply from ~1.5 eV to zero has been observed at room temperature in a pressure range of 45–55 GPa. This indirectly indicates a insulator-metal transition. The observed electronic transition correlates with the recently revealed structural and magnetic transitions induced by high pressures in this crystal. The behavior of the optical absorption edge with decreasing the pressure is completely reversible in correlation with the reversibility of the magnetic transition. The “smearing” of the structural transition in pressure is caused by thermal fluctuations between the high-spin state and low-spin state of the Fe3+ ions near the transition.  相似文献   

11.
The fluorescence lifetime for magnetic dipole 5D07F1 transition in yttrium aluminum garnet doped with Eu3+ (YAG:Eu3+) crystal was studied under the pressure of up to 10.4?GPa at room temperature. The fluorescence lifetime τ (5D07F1 transition) slowly decreased with pressure. The pressure effect on τ (5D07F1 transition) was explained with a model which considered pressure effect on line position: inter-ionic distance, ion volume, molecular volume, ion polarizability, molecular polarizability, sample refractive index, and surrounding hydrostatic medium refractive index. The fluorescence lifetime τ calculated by the presented model was in close correspondence with the experimental values.  相似文献   

12.
Abstract

Plutonium monoselenide was studied under high pressure up to 47 GPa, at room temperature, using a diamond anvil cell in an energy dispersive X-ray diffraction facility. At ambient pressure, PuSe has the NaC1-type (B1) structure. The compound has been found to undergo a second-order crystallographic phase transition at around 20 GPa. This phase can be described as a distorted B1 structure, with a rhombohedral symmetry. PuSe transforms to a new phase at around 35 GPa, which can be indexed in the cubic CsCl-type (B2). The volume collapse at this phase transition is 11%. When releasing pressure, we observed a strong hysteresis to the inverse transformation down to 5 GPa. From the pressure-volume relationship, the bulk modulus has been determined to B 0 = 98 GPa and its pressure derivative as B 0 = 2.6. These results are compared to those obtained with other actinide monmictides and monochalcogenides.  相似文献   

13.
We have calculated the structural, magnetic and electronic properties of corundum-type α-Fe2O3 from first principles using density-functional theory (DFT) and the DFT?+?U method to account for correlation effects in this material. Although the correct magnetic ground state is obtained by pure DFT, the magnetic moments and the band gap are too small, and the predicted structural phase transition coupled with a transition from the insulating high-spin to a metallic low-spin phase at a pressure of 14?GPa is not observed experimentally. We find that considering the Coulomb interaction directly by including a Hubbard-like term U in the density functional greatly improves the results with respect to band gap and magnetic moments. The phase transition is shifted to higher pressures with increasing values of U and disappears for U?>?3?eV. The best overall agreement of structural, magnetic and electronic properties with experimental data is obtained for U?=?4?eV.  相似文献   

14.
For the first time, Raman spectroscopy of α and γ polymorphs of AlH3 has been performed in the pressure range from ambient up to 16.9 and 32.7 GPa, respectively using the diamond anvil cell (DAC) technique. An analysis of pressure response wavenumbers (ν) for α‐AlH3 showed a change of dνi/dP at a pressure of about 8 GPa and may indicate a monoclinic distortion from the initially hexagonal α‐AlH3. The distortion is stable at least up to 16.9 GPa. The γ form exhibited more complex behavior transforming to the α form at a pressure of about 12 GPa. The structural phase transition was shown to be an irreversible and kinetically slow process that required at least 5 h to complete. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

16.
Compressibility of boron subarsenide B12As2 has been studied by synchrotron X-ray diffraction up to 47?GPa at room temperature in a diamond anvil cell using Ne pressure transmitting medium. A fit of experimental pV data by Vinet equation of state yielded the bulk modulus of 150(4) GPa and its first pressure derivative of 6.4(3). No pressure-induced phase transitions have been observed.  相似文献   

17.
We have developed a double stage diamond anvil cell (ds-DAC) technique for reproducible pressure by precisely fabricating 2nd stage anvils using a focused ion beam system. We used 2nd stage micro-anvils made of ultra-fine (V/V0?=?0.633 for the smallest d-spacing. The calculated pressure for this minimum volume varies from 430 to 630?GPa, depending on the choice of the equation of state of rhenium. We conclude that the most likely pressure achieved for the minimum volume of rhenium is in a range of 430–460?GPa based on a calibration using the platinum pressure scale to 280?GPa and the latter value of 630?GPa is unreasonably high, suggesting that the pressures in an earlier study for the equation of state of rhenium would have been significantly overestimated.  相似文献   

18.
Using an in situ method of Raman spectroscopy and resistance‐heated diamond anvil cell, the system datolite CaBSiO4(OH) – water has been investigated at simultaneously high pressure and temperature (up to Р ~5 GPa and Т ~250 °С). Two polymorphic transitions have been observed: (1) pressure‐induced phase transition or the feature in pressure dependence of Raman band wavenumbers at P = 2 GPа and constant T = 22 °С and (2) heating‐induced phase transition at T ~90 °С and P ~5 GPа. The number of Raman bands is retained at the first transition but changed at the second transition. The first transition is mainly distinguished by the changes in the slopes of pressure dependence of Raman peaks at 2 GPa. The second transition is characterized by several strong changes: the wavenumber jumps of major bands, the merging of strong doublets at 378 and 391 cm−1 (values for ambient conditions), the splitting of the intermediate‐intensity band at 292 cm−1, and the transformation of some low‐wavenumber bands at 160–190 cm−1. No spectral and visual signs of overhydration and amorphization have been observed. No noticeable dissolution of datolite in the water medium occurred at 5 GPa and 250 °С after 3 h, which corresponds to typical conditions of the ‘cold’ zones of slab subduction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0–72 GPa and the temperature range of 36–300 K in order to study the magnetic properties at a phase transition near a critical pressure of ~50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0–77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of ~48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS–LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic PT phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.  相似文献   

20.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号