首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe some important improvements allowed by the development of new cell assemblies coupled to opposed conical sintered diamond anvils in the Paris–Edinburgh press. We provide X-ray absorption and diffraction experiments carried out at pressures up to 16.5 GPa. The maximum temperature reached was 1800 K for P<10 GPa and 1300 K for higher pressures. The sintered diamond anvils are X-ray transparent and give access to a much larger X-ray window than the tungsten carbide anvils, even at the highest pressure. Therefore, X-ray measurements are performed using in situ cross-calibration simultaneously. We also describe a new heating setup used to reach high temperatures, despite the low conductivity of the sintered diamond core by deviating the electrical current using copper strips. These improvements are illustrated by recent data collected using angle dispersive in situ X-ray diffraction on liquid Fe-18%wt S and using EXAFS at the barium K-edge on Ba8Si46 silicon clathrates and at the iodine K-edge on iodine-intercalated nanotubes.  相似文献   

2.
A massive cubic press, with a maximum load of 1400 tons on every WC anvil, has been installed at the High Pressure Laboratory of Peking University. High-P experiments have been conducted to examine the performance of the conventional experimental setup and some newly developed assemblies adopting the anvil-preformed gasket system. The experimental results suggest that (1) the conventional experimental setup (assembly BJC2-0) can reach pressures up to about 6 GPa with a large cell volume of 34.33 cm3; (2) the anvil-preformed gasket system, despite decreasing the P-generating efficiency, extends the P-generating capability up to about 8 GPa at the expense of reducing the cell volume down to 8.62 cm3 (assembly BJC2-6); (3) due to the large cell volume, it is possible to make further modifications to extend the pressure range, as readily demonstrated, to about 10 GPa (assembly BJC5-7); (4) the effect of high temperature on the pressure generation of the press is not significant. It follows that this cubic press can be very useful in synthesizing materials of large volume at high pressures and to the studies such as high-P phase equilibrium, trace element partitioning and isotope fractionation in the research fields of Earth and planetary sciences.  相似文献   

3.
Simultaneous in situ pressure–resistance measurements were carried out up to 40 GPa using a multianvil apparatus with synchrotron-based X-ray diffraction (XRD) measurements. Pressure-induced electrical resistance changes in zirconium were measured at ambient temperatures and two discontinuities were observed around the α–ω and ω–β structural phase transitions. The transition pressures were strictly determined from simultaneous measurements of the electrical resistance and in situ XRD as 7.96±0.16 and 34.5±0.3 GPa, respectively, using an equation of state for gold as the pressure scale. The precisely determined transition pressures are available for room temperature pressure calibration points for large volume presses installed at offline laboratories.  相似文献   

4.
A rolling-sphere technique has been used to measure shear viscosities of (supercritical) fluid argon in the diamond-anvil cell between the temperatures of 294 and 673 K, up to a maximum pressure of 5 GPa. At these pressures, the viscosities can be fit to a modified free-volume expression. A single correlation between reduced viscosity and reduced residual entropy is shown to give a good account of the current high pressure data, data at lower pressures and those for the sub-critical liquid.  相似文献   

5.
A system for deformation experiments under high pressure using a deformation cubic apparatus, with monochromatic synchrotron radiation, has been developed at beamline AR-NE7A, Photon Factory, KEK High Energy Accelerator Research Organization, Japan. We have conducted deformation experiments of fayalite using this new system at pressures up to 5 GPa and temperatures up to 1073 K, and successfully conducted the stress and strain measurements during the deformation.  相似文献   

6.
Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.  相似文献   

7.
We have performed mid- and far-infrared (IR), Raman, and angular dispersive X-ray diffraction studies on melamine at high pressure up to 36 GPa. We have confirmed the presence of three phase transitions; the first between 1 and 2 GPa, the second between 7 and 9 GPa, and the third near 16 GPa. We observed a softening of the N–H symmetric and antisymmetric vibrations with pressure, suggesting that intermolecular hydrogen bonding increases as the intermolecular distance decreases similarly to what was observed in triamino-trinitrobenzene. The molecular decompression data from core intramolecular peaks of mid-IR and Raman indicate that melamine did not chemically decompose up to the highest investigated pressures but the sample suffered some irreversible amorphization. We have further clarified the lack of observation of any phase transitions in prior Raman and IR studies by examining the pressure dependence of other uninvestigated modes of vibration.  相似文献   

8.
We report a synchrotron energy-dispersive X-ray diffraction study of the novel high explosive 1,1-diamino-2,2-dinitroethylene at high pressures and high temperatures. Pressure was generated using a Paris–Edinburgh cell to employ larger sample volumes. High temperatures were created using a resistive graphite cylinder surrounding the sample. The PT phase diagram was explored in the 3.3 GPa pressure range and in the ~ 400°C temperature range. We believe that the sample commenced in the α-phase and then ended up in an amorphous phase when the temperature increased beyond 280°C near 2 GPa, which we believe to be the γ-phase. Further pressure and temperature cycling suggests that the sample transformed reversibly into and out of the amorphous phase near the phase line.  相似文献   

9.
Neutron powder diffraction measurements of 0.9 mm3 of mixture of deuterated brucite and pressure medium were conducted at pressures to 2.8 GPa, using an opposed anvil cell and a medium-resolution diffractometer at Japan Proton Accelerator Research Complex pulsed neutron source. Spurious-free diffraction patterns were successfully obtained and refined to provide all structural parameters including Debye–Waller factors. Tilting of hydroxyl dipoles of brucite toward one of the three nearest-neighbor oxygen anions was confirmed to be substantial at pressure as low as 1.5 GPa. By this application, technical feasibility to analyze such a small sample has been newly established, which would be useful to extend the applications of neutron diffraction at high pressures.  相似文献   

10.
Pressure-induced structural changes on nano-crystalline La0.8Sr0.2Mn0.8Fe0.2O3 were studied using high-pressure Mössbauer spectroscopy and high-pressure X-ray diffraction. Mössbauer measurements up to 10 GPa showed first order transition at 0.52 GPa indicating transformation of Fe4?+? to high spin Fe3?+?, followed by another subtle transition at 3.7 GPa due to the convergence of two different configurations of Fe into one. High-pressure X-ray diffraction measurements carried up to 4.3 GPa showed similar results at 0.6 GPa as well as 3.6 GPa. Attempts were made to explain the changes at 0.6 GPa by reorientation of grain/grain boundaries due to uniaxial stress generated on the application of pressure. Similarly variation at 3.6 GPa can be explained by orthorhombic to monoclinic transition.  相似文献   

11.
 介绍了一种6-8型二级加压装置——1 000 t Walker型大腔体高温高压装置中样品的组装方式、组装件材料和压力标定方法。采用碳化钨作为压砧时,获得的最高压力超过20 GPa。压力标定方法采用相变点法,即利用Bi、Tl、ZnTe、Pb、SnS、GaAs等标准压力标定物质,通过测量其在室温高压下的电阻变化,确定相变点,进而获得高压腔体内的压力与外加载荷的关系。对具有不同二级压砧截角边长(4、6、8、12 mm)组装的内部实际压力进行标定,得到了外加载荷与内部压力的关系曲线,为今后在该装置上的实验样品组装及样品实际压力确定提供了准确的数据。  相似文献   

12.
We designed new anvil assemblies for acquiring high-quality neutron diffraction data and ruby fluorescence spectra inside a sample chamber. The conical aperture of Ni-binded WC anvils was expanded by a factor of two. A hybrid gasket made of TiZr- and Al-alloy was developed to prevent outward extrusion. A small and optically transparent window of moissanite was introduced to allow for the determination of pressure and hydrostaticity by measurement of ruby fluorescence spectra. High pressure-generation tests that make use of Bi electrical conductivity and ruby pressure markers revealed that pressure could be determined over 10 GPa. In situ synchrotron X-ray diffraction experiments were also carried out using NaCl as the pressure calibrants. The maximum pressure achieved was approximately 13 GPa. The neutron diffraction intensity from the newly generated anvil assemblies was 2.5–3.0 times greater than that using the standard toroidal anvil assemblies used previously.  相似文献   

13.
In the present study, high pressure synthesis up to 10 GPa was done using a small cubic anvil apparatus (W45×D52×H92 cm3, load capacity of 1.80 MN) with a multi-anvil 6-6 system. Its performance was demonstrated by synthesizing a ferromagnetic perovskite oxide, CaCu3Fe4O12, at pressure–temperature conditions of 10 GPa and 1400 K. The synthesized CaCu3Fe4O12 perovskite was ~1 mm in diameter and ~2 mm in height and its size was large enough for performing magnetic susceptibility measurements at 5–300 K using a superconducting quantum interference device magnetometer and phase identification by X-ray diffraction. The experimental system developed in the present study has many advantages when used in high pressure synthesis experiments, and the technical development of a small cubic anvil apparatus will greatly contribute to the advancement of high pressure synthesis of novel materials.  相似文献   

14.
Structural change in Bi2Te3 under high pressure up to 16.6 GPa has been studied by powder x-ray diffraction. We observed two times of phase transitions at room temperature at the pressures of 8 and 14 GPa, respectively. According to our preliminary result on electrical resistance, it is reasonable to suppose that superconducting transition with T c =2.8 K at the pressures of 10.2 GPa is observed in phase II. On the other hand, we found anomalies of the pressure dependences of lattice parameters and volume at around 2 GPa, which probably means the change in electrical structure on the Fermi surface.  相似文献   

15.
Electrical resistance and X-ray diffraction measurements and also optical observations under a polarizing microscope were made on CuCl to pressures in excess of 12.5 GPa at room temperature using a diamond anvil cell. Resistance measurements were also performed in a piston-cylinder apparatus to pressures of approximately 5.5 GPa at room temperature. Three samples of CuCl prepared by different methods were examined. No anomalous pressure dependence in electrical resistance was found in the pressure range studied, and no dramatic changes in optical transmission were observed up to pressures of approximately 10.0 GPa. Optical observations and X-ray diffraction measurements indicate the existence of four phases in the pressure range studied, including a nonconducting black opaque phase which grows with time when CuCl is left for several days at the highest pressures.  相似文献   

16.
We have studied the high pressure behavior of the α and β-phases of Tb 2(MoO 4)3 using a combination of powder X-ray diffraction and ab initio calculations. The α-Tb 2(MoO 4)3 phase did not undergo any structural phase transition in the pressure range from 0 up to the maximum experimental pressure of 21 GPa. We observed line broadening of the diffraction patterns at pressures above 7 GPa, which may be due to non-hydrostatic conditions. The complete amorphization of the sample was not reached in the pressure range studied, as expected from previous Raman studies. The behavior under pressure of the β-Tb 2(MoO 4)3 phase is similar to that of other rare-earths trimolybdates with the same structure at room temperature. A phase transition was observed at 2 GPa. The new phase, which can be identified as the δ-phase, has never been completely characterized by diffraction studies. A tentative indexation has been performed and good refined cell parameters were obtained. We detect indications of amorphization of the δ-Tb 2(MoO 4)3 phase at 5 GPa.  相似文献   

17.
The hydrogen storage capacity of Mg–Ti–H films is approximately five times that of conventional metal hydride electrodes in NiMH-batteries. Mg and Ti are considered to be immiscible in the bulk and the ambient pressure phase diagram of Mg and Ti indicates that no binary stable bulk compounds are formed. However, in the presence of hydrogen, an Mg–Ti–H phase has been obtained by Kyoi et al. using a high pressure synthesis – where magnesium hydride is compacted with different TM-hydrides in an anvil cell at pressures of the order several GPa (4–8 GPa) and at a temperature of 873 K. In this work, we have proved the feasibility of in situ powder diffraction using the Paris–Edinburgh high pressure cell for the observation of structural changes on this system and we propose modifications to improve the output of the experiment.  相似文献   

18.
19.
Abstract

A phase transition from Ca(OH)2 I (portlandite) to Ca(OH)2 II at high pressure and temperature has been confirmed, using in situ x-ray diffraction in a multianvil high pressure device (DIA). The structure was determined at 9.5 GPa and room temperature from data collected after heating the sample at 300°C at 7.2 GPa in a diamond anvil cell. Both the Le Bail fit and preliminary Rietveld refinement suggest that the new phase, which reverts to Ca(OH), I during pressure release, has a structure related to that of baddeleyite (ZrO1); it is monoclinic (P21/c) with a= 4.887(2), b= 5.834(2), c = 5.587(2), β = 99.74(2)°. The coordination number of Ca increases from six to seven (5 + 2) across the transition. At 500°C, the phase boundary is bracketed at 5.7 ± 0.4 GPa by reversal experiments performed in the DIA.  相似文献   

20.
HgWO4 at ambient pressure is characterized using a combination of ab initio calculations, X-ray diffraction and Raman scattering measurements. The effect of low pressure and temperature on the structural stability is analysed. Extending our ab initio study to the range of higher pressures, a sequence of stable phases up to 30 GPa is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号