首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
在单机排序和工件运输的最小化最大完工时间问题中,工件首先在一台机器上加工,然后被一辆有容量限制的汽车运送到一个顾客.当工件的加工时间和尺寸无关时, Chang和Lee已经证明该问题是强NP困难的.他们也给出了一个启发式算法,它的最差执行比为5/3,并且这个界是紧的.本文考虑工件的加工时间和尺寸成正比的情形,证明了Chang和Lee的算法有更好的最差执行比53/35,并提供了一个新的启发式算法,它的最差执行比是3/2,并且这个界是最好的.  相似文献   

2.
In a recent paper, Chen [J.S. Chen, Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan, European Journal of Operational Research 190 (2008) 90–102] proposes a heuristic algorithm to deal with the problem Scheduling of Nonresumable Jobs and Flexible Maintenance Activities on A Single Machine to Minimize Makespan  . Chen also provides computational results to demonstrate its effectiveness. In this note, we first show that the worst-case performance bound of this heuristic algorithm is 2. Then we show that there is no polynomial time approximation algorithm with a worst-case performance bound less than 2 unless P=NPP=NP, which implies that Chen’s heuristic algorithm is the best possible polynomial time approximation algorithm for the considered scheduling problem.  相似文献   

3.
The scheduling problem of open shop to minimize makespan with release dates is investigated in this paper. Unlike the usual researches to confirm the conjecture that the tight worst-case performance ratio of the Dense Schedule (DS) is 2 − 1/m, where m is the number of machines, the asymptotic optimality of the DS is proven when the problem scale tends to infinity. Furthermore, an on-line heuristic based on DS, Dynamic Shortest Processing Time-Dense Schedule, is presented to deal with the off-line and on-line versions of this problem. At the end of the paper, an asymptotically optimal lower bound is provided and the results of numerical experiments show the effectiveness of the heuristic.  相似文献   

4.
It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.  相似文献   

5.
We consider the two-stage flexible flow shop makespan minimization problem with uniform parallel machines. Soewandi and Elmaghraby [Soewandi, H., Elmaghraby, S., 2003. Sequencing on two-stage hybrid flowshops with uniform machines to minimize makespan. IIE Transaction 35, 467–477] developed a heuristic (S–E) and derived a machine speed-dependent worst-case ratio bound for it. We point out that this bound works well when the uniform machines have approximately equal speeds but is not indicative of the performance of the S–E heuristic when the machine speeds are in a wide range. Motivated by this observation, we propose an alternative tight machine-speed dependent worst-case bound for the S–E heuristic that works well when the machine speeds vary significantly. We then combine the two speed-dependent ratio bounds into a speed-independent bound. Our findings facilitate the narrowing of the gap between experimental performance and worst-case bound for the S–E heuristic.  相似文献   

6.
High speed networks such as the B-ISDN must be adequately equipped to handle multipoint communication in a fast and economical manner. Multicast applications include desktop video conferencing, distance learning, distributed database applications, etc. In networks employing the asynchronous transfer mode (ATM) technology, routing a multicast is achieved by constructing a tree that spans the source and all the destinations. For the purpose of routing, the network is modeled as a weighted, undirected graph. The graph-theoretic solution is to find a minimum Steiner tree for the graph given a set of destinations. This formulation suffices for building multicast trees with a single optimization constraint as would be the xcase for best effort transport. For real-time traffic, however, it is necessary to ensure that the delay between the sender and each of the receivers is bounded. In this case the network is modeled as an undirected graph, where the edges have both a cost and a delay associated with them. The graph-theoretic solution is then to find a constrained minimum Steiner tree such that the delay between the source and each of the destinations does not violate the specified bound. Both of these problems are NP-complete. In this paper we review prior work on the multipoint routing problem and discuss the formulation of the unconstrained and constrained Steiner problems. We use the random neural network (RNN) to significantly improve the quality of trees found by the two existing best heuristics for finding Steiner trees - the minimum spanning tree heuristic and the average distance heuristic. We also develop a new heuristic for finding delay constrained Steiner trees. Experimental results are presented which show that the new heuristics improve significantly over existing ones.  相似文献   

7.
研究具有优先权和准备时间的自由作业时间表问题 ,在稠密时间表的情况下 ,给出一种启发式算法 ,猜想该算法的紧界是 2 -2 /( m +1 ) ,其中 m是机器台数 .对于只有两台机器的情况 ,即当 m =2 时 ,证明该算法的最坏性能比是 4/3 ,并通过实例证明上界是紧的 .  相似文献   

8.
We consider an integrated production-distribution scheduling problem in the context of a commit-to-delivery business model. The problem is strongly NP-hard. We propose a polynomial-time heuristic algorithm and show that its worst-case performance ratio is bounded by 2 and that this bound is tight.  相似文献   

9.
We study the coordinated scheduling problem of hybrid batch production on a single batching machine and two-stage transportation connecting the production, where there is a crane available in the first-stage transportation that transports jobs from the warehouse to the machine and there is a vehicle available in the second-stage transportation to deliver jobs from the machine to the customer. As the job to be carried out is big and heavy in the steel industry, it is reasonable assumed that both the crane and the vehicle have unit capacity. The batching machine processes a batch of jobs simultaneously. Each batch occur a setup cost. The objective is to minimize the sum of the makespan and the total setup cost. We prove that this problem is strongly NP-hard. A polynomial time algorithm is proposed for a case where the job transportation times are identical on the crane or the vehicle. An efficient heuristic algorithm for the general problem is constructed and its tight worst-case bound is analyzed. In order to further verify the performance of the proposed heuristics, we develop a lower bound on the optimal objective function. Computational experiments show that the heuristic algorithm performs well on randomly generated problem instances.  相似文献   

10.
This paper addresses the issue of computing the asymptotic worst-case of lower bounds for the Bin Packing Problem. We introduce a general result that allows to bound the asymptotic worst-case performance of any lower bound for the problem and to derive for the first time the asymptotic worst-case of the well-known bound L3 by Martello and Toth. We also show that the general result allows to easily derive the asymptotic worst-case of several lower bounds proposed in the literature.  相似文献   

11.
We study the problem of scheduling n non-preemptable jobs on a single machine which is not available for processing during a given time period. The objective is to minimize the sum of the job completion times. The best known approximation algorithm for this NP-hard problem has a relative worst-case error bound of 17.6%. We present a parametric O(nlog n)-algorithm H with which better worst-case error bounds can be obtained. The best error bound calculated for the algorithm in the paper is 7.4%. In a computational experiment, we test the algorithm with the performance guarantee set to 10.2%. It turns out that randomly generated instances with up to 1000 jobs can be solved with a mean (maximum) error of 0.31% (3.18%) and a mean (maximum) computation time of 0.8 (9.7) seconds.  相似文献   

12.
In this paper, we consider the single-machine scheduling problems with a time-dependent deterioration. By the time-dependent deterioration, we mean that the processing time of a job is defined by an increasing function of total normal processing time of jobs in front of it in the sequence. The objective is to minimize the total completion time. We develop a mixed integer programming formulation for the problem. The complexity status of this problem remains open. Hence, we use the smallest normal processing time (SPT) first rule as a heuristic algorithm for the general cases and analyze its worst-case error bound. Two heuristic algorithms utilize the V-shaped property are also proposed to solve the problem. Computational results are presented to evaluate the performance of the proposed algorithms.  相似文献   

13.
We introduce a novel approach for analyzing the worst-case performance of first-order black-box optimization methods. We focus on smooth unconstrained convex minimization over the Euclidean space. Our approach relies on the observation that by definition, the worst-case behavior of a black-box optimization method is by itself an optimization problem, which we call the performance estimation problem (PEP). We formulate and analyze the PEP for two classes of first-order algorithms. We first apply this approach on the classical gradient method and derive a new and tight analytical bound on its performance. We then consider a broader class of first-order black-box methods, which among others, include the so-called heavy-ball method and the fast gradient schemes. We show that for this broader class, it is possible to derive new bounds on the performance of these methods by solving an adequately relaxed convex semidefinite PEP. Finally, we show an efficient procedure for finding optimal step sizes which results in a first-order black-box method that achieves best worst-case performance.  相似文献   

14.
This paper analyses a worst-case performance of the shortest-processing-time (SPT) heuristic in minimizing a quadratic function of job lateness for single machine scheduling. A sufficient condition on processing-plus-wait due dates is found for the SPT sequence to be optimal. A worst-case lower bound to the optimal solution is derived from the SPT sequence. It is then shown that the SPT sequence is asymptotically optimal. Extensive computational experiments suggest that the SPT heuristic may be a good choice for just-in-time production.  相似文献   

15.
The Stochastic Eulerian Tour Problem (SETP) seeks the Eulerian tour of minimum expected length on an undirected Eulerian graph, when demand on the arcs that have to be serviced is probabilistic. The SETP is NP-hard and in this paper, we develop three constructive heuristics for this problem. The first two are greedy tour construction heuristics while the third is a sub-tour concatenation heuristic. Our experimental results show that for grid networks, the sub-tour concatenation heuristic performs well when the probability of service of each edge is greater than 0.1. For Euclidean networks, as the number of edges increases, the second heuristic performs the best among the three. Also, the expected length of our overall best solution is lower than the expected length of a random tour by up to 10% on average for grid networks and up to 2% for Euclidean networks.  相似文献   

16.
A flow shop with identical machines is called a proportionate flow shop. In this paper, we consider the variant of the n-job, m-machine proportionate flow shop scheduling problem in which only one machine is different and job processing times are inversely proportional to machine speeds. The objective is to minimize maximum completion time. We describe some optimality conditions and show that the problem is NP-complete. We provide two heuristic procedures whose worst-case performance ratio is less than two. Extensive experiments with various sizes are conducted to show the performance of the proposed heuristics.  相似文献   

17.
We investigate a new scheduling problem, multiple-orders-per-job (MOJ), in the context of a two-machine flowshop. Lower bounds for the makespan performance measure are provided for combinations of lot-processing and item-processing machines. An optimization model is presented that addresses both job formation and job sequencing. We define a heuristic to minimize the makespan for the MOJ problem for two-machine item-processing flowshops. The heuristic obtains solutions within 2% of a tight lower bound and runs in O(HF) time, where H is the number of orders and F is the restricted number of jobs.  相似文献   

18.
We consider an undirected graph G?=?(V, E), the minimum sum coloring problem (MSCP) asks to find a valid vertex coloring of G, using natural numbers (1,2,...), the aim is to minimize the total sum of colors. In this paper we are interested in the elaboration of an approximate solution for the minimum sum coloring problem (MSCP), more exactly we try to give a lower bound for MSCP by looking for a decomposition of the graph based on the metaheuristic of ant colony optimization (ACO). We test different instances to validate our approach.  相似文献   

19.
The paper is devoted to some flow-shop scheduling problems with a learning effect. The objective is to minimize one of the two regular performance criteria, namely, makespan and total flowtime. A heuristic algorithm with worst-case bound m for each criteria is given, where m is the number of machines. Furthermore, a polynomial algorithm is proposed for both of the special cases: identical processing time on each machine and an increasing series of dominating machines. An example is also constructed to show that the classical Johnson's rule is not the optimal solution for the two-machine flow-shop scheduling to minimize makespan with a learning effect. Some extensions of the problem are also shown.  相似文献   

20.
In this work, we focus on the scheduling of multi-crane operations in an iron and steel enterprise for a two-stage batch annealing process. The first stage is the heating process, and the second stage is the cooling process. To start the heating (cooling) stage, a special machine called a furnace (cooler) must be loaded. The real constraints of no-delay machine unloading are defined as follows: once the heating (cooling) is completed, the furnace (cooler) must be unloaded by crane immediately. The goal is to schedule limited machines (furnaces and coolers) operated by multiple cranes to minimize the completion time of the last annealed coil (makespan). We formulate a mixed-integer linear programming model to address this problem. Certain feasible properties are identified to avoid crane conflicts and ensure that the machine unloading no-delay constraints are met. Based on these necessary conditions, we then present a heuristic algorithm with running time in connection with the number of cranes, coils and machines. A lower bound to the problem is also developed. Through theoretical analysis, we show the worst-case bound of our heuristic algorithm. The average performances of the solution approaches are computationally evaluated. The computational results show that the proposed heuristic algorithm is capable of generating good quality solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号