首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
欧谷平  宋珍  桂文明  张福甲 《物理学报》2005,54(12):5717-5722
利用原子力显微镜对8-羟基喹啉硼化锂(LiBq4)/铟锡氧化物和8-羟基喹啉硼化锂/酞菁铜(CuPc)/铟锡氧化物表面分别进行了扫描,显示了LiBq4在不同衬底上的形貌差异,并进一步利用样品表面的x射线光电子能谱图验证了这一差异.实验表明,CuPc层的加入改善了LiBq4的成膜质量,并将这种改善归因于分子构型与电子亲和势的不同. 关键词: 原子力显微镜 x射线光电子能谱 电子亲和势  相似文献   

2.
本文采用分子束外延方法制备出MnSi薄膜和MnSi1.7纳米线,利用扫描隧道显微镜进行观察,采用X射线光电子能谱仪系统地分析了MnSi薄膜和MnSi1.7纳米线的Mn2p和Si2p.结果表明厚度为-0.9nm的MnSi薄膜表面为/3×/3重构,MnSi1.7纳米线长50ff--1500nm,宽16—18nm,高-3nm.MnSi薄膜的Mn2p1/2和Mn2p3/2峰位与MnSil.7纳米线相同,均分别为649.7eV和638.7ev结合能在640-645eV和-653.8eV处的锰氧化合物的Mn2ps/2和Mn2p1/2峰证明在短暂暴露于空气中后MnSi薄膜和MnSi1.7纳米线表面有氧化层形成.相对于纯si的si2p谱,两种锰硅化合物的Si2p谱向低结合能方向发生了位移,表明随着锰硅化合物的形成Si的化学环境发生了变化.  相似文献   

3.
CuPc/ITO结构的表面和界面电子态的XPS研究   总被引:3,自引:0,他引:3  
覆盖有Indium tin oxide(ITO)膜的透明导电玻璃广泛地用作有机发光器件 (OLEDs)的空穴注入电极 ,但是ITO膜的功函数通常与空穴传输材料的最高被占据分子轨道 (HOMO)不匹配。铜酞菁 (CuPc)作为缓冲层可以提高空穴从ITO向空穴传输材料的注入效率。对CuPc ITO样品的XPS表面分析表明 ,在CuPc分子中 ,铜原子显 2价 ,通过配位键和氮原子相互作用。CuPc分子中有两类碳原子 :8个C原子与 2个N原子成键 ;其余 2 4个C原子具有芳香烃性质。N原子也处在两种化学环境中 :有 4个N原子只与 2个C原子形成CNC键 ;另外 4个N原子不仅与 2个C原子成键 ,还通过配位键与Cu原子成键。用氩离子束对样品表面进行了溅射剥蚀 ,当溅射时间分别为 2 ,5 ,10min时进行XPS采谱分析 ,结果表明 ,随着氩离子束溅射时间增长 ,C 1s,N 1s峰变弱 ,Cu 2p ,O 1s,In 3d,Sn 3d峰增强 ,C 1s,N 1s,O 1s,In 3d和Sn 3d峰都向高束缚能或低束缚能方向移动 ,但它们的情况却不相同。  相似文献   

4.
We report for the first time on muscovite mica surfaces nanostructured by a low-energy defocused Ar ion beam: ripple structures self-organize on macroscopic areas, with wavelength and roughness in the range 40-140 nm and 0.5-15 nm respectively, according to ions dose. In detail we address structural and chemical variations of the surface layer induced by sputtering. X-ray Photoelectron Spectroscopy (XPS) survey spectra reveal selective sputtering and Al surface enrichment whereas Atomic Force Microscopy (AFM) force-spectroscopy experiments indicate reduced charging of irradiated specimens under aqueous electrolyte solutions. Such experimental evidences contribute to clarify the chemical and physical properties of nanostructured mica samples, in view of their potential use as templates for aligned deposition of organic molecules and investigations on nanolubrication phenomena.  相似文献   

5.
利用原子力显微镜对8-羟基喹啉硼化锂(LiBq4)/铟锡氧化物和8-羟基喹啉硼化锂/酞菁铜(CuPc)/铟锡氧化物表面分别进行了扫描,显示了LiBq4在不同衬底上的形貌差异,并进一步利用样品表面的x射线光电子能谱图验证了这一差异.实验表明,CuPc层的加入改善了LiBq4的成膜质量,并将这种改善归因于分子构型与电子亲和势的不同.  相似文献   

6.
Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment.  相似文献   

7.
PTCDA/ITO表面和界面的X射线光电子能谱分析   总被引:1,自引:1,他引:1  
利用X射线光电子能谱对PTCDA/p-Si有机/无机光电探测器中PTCDA/ITO表面和界面进行了测试分析。结果表明,苝环上的C原子的结合能为284.6 eV,酸酐中的C原子的结合能为288.7 eV,并存在来源于ITO膜中的氧对C原子的氧化现象,界面处C(1s)谱中较高结合能峰消失,且峰值向低结合能发生化学位移;CO键中O原子的结合能为531.5 eV,C—O—C键中的O原子的结合能为533.4 eV。  相似文献   

8.
Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H2O2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH4)2S and RCA procedures giving the best RMS values (∼0.5-0.8 nm).  相似文献   

9.
The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.  相似文献   

10.
The objective of this paper is to describe application of atomic force microscopy (AFM) for characterization and calibration of static deflection of electromagnetically and/or thermally actuated micro-electromechanical (MEMS) bridge. The investigated MEMS structure is formed by a silicon nitride bridge and a thin film metal path enabling electromagnetic and/or thermal deflection actuation. We present how static microbridge deflection can be measured using contact mode AFM technology with resolution of 0.05 nm in the range of up to tens of nm. We also analyze, for very small structure deflections and under defined and controlled load force varied in the range up to ca. 32 nN, properties of thermal and electromagnetical microbridge deflection actuation schemes.  相似文献   

11.
In this work, low-pressure air plasma has been used to improve polyethylene terephthalate (PET) surface properties for technical applications. Surface free energy values have been estimated using contact angle value for different exposure times and different test liquids. Surface composition and morphology of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Surface topography changes related with the etching mechanism have been followed by weight loss study. The results show a considerable improvement in surface wettability and the surface free energy values even for short exposure times in the different discharge areas (discharge area, afterglow area and remote area), as observed by a remarkable decrease in contact angle values. Change of chemical composition made the polymer surfaces to be highly hydrophilic, which mainly depends on the increase in oxygen-containing groups. In addition to, the surface activation and AFM analyses show obvious changes in surface topography as a consequence of the plasma-etching mechanism.  相似文献   

12.
A combined atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) study of tungsten oxide model catalysts is presented. The model catalysts were prepared by applying the real preparation method to a ZrO2(1 0 0) single crystal support. AFM imaged several granular structures of scattered dimensions on the surface of ZrO2(1 0 0) in the as prepared samples. After heating, at low loading the tungsten species rearranged into small WOx particles strongly interacting with the substrate. At high tungsten content large WO3 aggregates also formed. XPS analysis confirmed these changes. The estimated surface density of the interacting W-containing species closely matched that of real catalysts.  相似文献   

13.
We demonstrated the high resolution imaging of the organic molecules using noncontact atomic force microscopy in ultrahigh vacuum. The sample was C60 molecules deposited on the Si(111)-7×7 reconstructed surface. When the thickness of the C60 film was submonolayer, we could image some isolated C60 molecules and the reconstructed Si surface simultaneously. However, the imaging was highly unstable not only because of the large structure but also due to the large difference between the interaction forces on the molecules and on the Si surface. On the other hand, when the thickness of the C60 molecules was almost monolayer, individual molecules could be stably imaged.  相似文献   

14.
Imidazolines and amidic precursors were synthesized with good yields through an optimized process. These compounds were evaluated as corrosion inhibitors in an aqueous solution of 1.0 M HCl by gravimetric and polarization techniques. AISI 1018 carbon steel displayed a corrosion rate dependent on the molecular structure and concentration of inhibitor in the testing environment. Adsorption of inhibitors was found to follow the Langmuir's isotherm, this concept together with Gibbs’ free energy provided the basis to arrange corrosion inhibitors according to efficiency and stability. The surface analysis by AFM displayed that the damage on the metallic surface was considerably reduced in the presence of certain inhibitors. XPS determined the presence of a layer of inhibitor on the metal surface with protective properties.  相似文献   

15.
Porous GaAs layers were formed by electrochemical etching of p-type GaAs(1 0 0) substrates in HF solution. A surface characterization has been performed on p-type GaAs samples using X-ray photoelectron spectroscopy (XPS) technique in order to get information about the chemical composition, particularly on the surface contamination. According to the XPS spectra, the oxide layer on as-received porous GaAs substrates contains As2O3, As2O5 and Ga2O3. Large amount of oxygen is present at the surface before the surface cleaning.Compared to untreated GaAs surface, room temperature photoluminescence (PL) investigations of the porous layers reveal the presence of two PL bands: a PL peak at ∼871 nm and a “visible” PL peak at ∼650-680 nm. Both peak wavelengths and intensities varied from sample to sample depending on the treatment that the samples have undergone. The short PL wavelength at 650-680 nm of the porous layers is attributed to quantum confinement effects in GaAs nano-crystallites. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-sized crystallites were observed on the porous GaAs surface. An estimation of the mean size of the GaAs nano-crystals obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results.  相似文献   

16.
The temperature dependent adsorption of sulfur on TiO2(1 1 0) has been studied with X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED). Sulfur adsorbs dissociatively at room temperature and binds to fivefold coordinated Ti atoms. Upon heating to 120°C, 80% of the sulfur desorbs and the S 2p peak position changes from 164.3±0.1 to 162.5±0.1 eV. This peak shift corresponds to a change of the adsorption site to the position of the bridging oxygen atoms of TiO2(1 1 0). Further heating causes little change in S coverage and XPS binding energies, up to a temperature of 430°C where most of the S desorbs and the S 2p peak shifts back to higher binding energy. Sulfur adsorption at 150°C, 200°C, and 300°C leads to a rich variety of structures and adsorption sites as observed with LEED and STM. At low coverages, sulfur occupies the position of the bridging oxygen atoms. At 200°C these S atoms arrange in a (3×1) superstructure. For adsorption between 300°C and 400°C a (3×3) and (4×1) LEED pattern is observed for intermediate and saturation coverage, respectively. Adsorption at elevated temperature reduces the substrate as indicated by a strong Ti3+ shoulder in the XPS Ti 2p3/2 peak, with up to 15.6% of the total peak area for the (4×1) structure. STM of different coverages adsorbed at 400°C indicates structural features consisting of two single S atoms placed next to each other along the [0 0 1] direction at the position of the in-plane oxygen atoms. The (3×3) and the (4×1) structure are formed by different arrangements of these S pairs.  相似文献   

17.
The influence of 200 MeV Au ion irradiation on the surface properties of polycrystalline fullerene films has been investigated. The X-ray photoelectron and X-ray Auger electron spectroscopies are employed to study the ion-induced modification of the fullerene, near the surface region. The shift of C 1s core level and decrease in intensity of shake-up satellite were used to investigate the structural changes (like sp2 to sp3 conversion) and reduction of π electrons, respectively, under heavy ion irradiation. Further, X-ray Auger electron spectroscopy was employed to investigate hybridization conversion qualitatively as a function of ion fluence.  相似文献   

18.
A SiC/SiC composite is characterized by X-ray diffraction, atomic force microscopy and various positron spectroscopies (slow positron implantation, positron lifetime and re-emission). It is found that besides its main constituent 3C-SiC the composite still must contain some graphite. In order to better interpret the experimental findings of the composite, a pyrolytic graphite sample was also investigated by slow positron implantation and positron lifetime spectroscopies. In addition, theoretical calculations of positron properties of graphite are presented.  相似文献   

19.
Constant force images of the V2O5(001) surface were recorded in ambient conditions with atomic force microscopy. All images exhibit the 11.5 Å × 3.5 Å. periodicity expected for a bulk terminated surface. However, images reveal differences from the ideal structure. The experimental results are interpreted in terms of preferential adsorption sites for water molecules. Because these sites are thought to influence the catalytic properties of the surface, their characterization is an important step towards understanding how the atomic-scale structure of a surface influences its properties.  相似文献   

20.
Yo-Shan Lu 《Surface science》2007,601(18):3788-3791
Using atomic force microscope (AFM) tip, local large-area oxide bumps were induced on a native SiO2 layer applied with a static 10 V in an ambient surrounding. It can be seen in the backscattered electron (BE) images that the oxide bumps were SiOx layer, not the native SiO2 layer. Also, the spectra of energy dispersive X-ray spectrometer (EDS) displayed that the oxide bumps contained oxygen more than did the native SiO2 layer, indicating that the O/Si ratio of the oxide bump is greater than two. A comparison of the growth rates of the point oxide protrusions on the oxide bumps and on the native SiO2, can be used to directly determined the composition stoichiometry (the O/Si ratio (=x)) of the oxide bumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号