首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subtree filament graphs are the intersection graphs of subtree filaments in a tree. This class of graphs contains subtree overlap graphs, interval filament graphs, chordal graphs, circle graphs, circular-arc graphs, cocomparability graphs, and polygon-circle graphs. In this paper we show that, for circle graphs, the clique cover problem is NP-complete and the h-clique cover problem for fixed h is solvable in polynomial time. We then present a general scheme for developing approximation algorithms for subtree filament graphs, and give approximation algorithms developed from the scheme for the following problems which are NP-complete on circle graphs and therefore on subtree filament graphs: clique cover, vertex colouring, maximum k-colourable subgraph, and maximum h-coverable subgraph.  相似文献   

2.
In this paper, we approach the quality of a greedy algorithm for the maximum weighted clique problem from the viewpoint of matroid theory. More precisely, we consider the clique complex of a graph (the collection of all cliques of the graph) which is also called a flag complex, and investigate the minimum number k such that the clique complex of a given graph can be represented as the intersection of k matroids. This number k can be regarded as a measure of “how complex a graph is with respect to the maximum weighted clique problem” since a greedy algorithm is a k-approximation algorithm for this problem. For any k>0, we characterize graphs whose clique complexes can be represented as the intersection of k matroids. As a consequence, we can see that the class of clique complexes is the same as the class of the intersections of partition matroids. Moreover, we determine how many matroids are necessary and sufficient for the representation of all graphs with n vertices. This number turns out to be n-1. Other related investigations are also given.  相似文献   

3.
Given an undirected graph G=(V,E) with vertex set V={1,??,n} and edge set E?V×V. Let w:V??Z + be a weighting function that assigns to each vertex i??V a positive integer. The maximum weight clique problem (MWCP) is to determine a clique of maximum weight. This paper introduces a tabu search heuristic whose key features include a combined neighborhood and a dedicated tabu mechanism using a randomized restart strategy for diversification. The proposed algorithm is evaluated on a total of 136 benchmark instances from different sources (DIMACS, BHOSLIB and set packing). Computational results disclose that our new tabu search algorithm outperforms the leading algorithm for the maximum weight clique problem, and in addition rivals the performance of the best methods for the unweighted version of the problem without being specialized to exploit this problem class.  相似文献   

4.
An intersection graph of rectangles in the (x, y)-plane with sides parallel to the axes is obtained by representing each rectangle by a vertex and connecting two vertices by an edge if and only if the corresponding rectangles intersect. This paper describes algorithms for two problems on intersection graphs of rectangles in the plane. One is an O(n log n) algorithm for finding the connected components of an intersection graph of n rectangles. This algorithm is optimal to within a constant factor. The other is an O(n log n) algorithm for finding a maximum clique of such a graph. It seems interesting that the maximum clique problem is polynomially solvable, because other related problems, such as the maximum stable set problem and the minimum clique cover problem, are known to be NP-complete for intersection graphs of rectangles. Furthermore, we briefly show that the k-colorability problem on intersection graphs of rectangles is NP-complete.  相似文献   

5.
The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K0(G)=G, Kn+1(G)=K(Kn(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results, it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class of clique-Helly graphs or to the class of dismantlable graphs. However, in both of these cases the collection of iterated clique graphs is finite up to isomorphism. In this paper, we show two infinite classes of clique-divergent graphs that satisfy G?Kn(G) for all n, moreover Kn(G) and G are simple-homotopy equivalent. We provide some results on simple-homotopy type that are of independent interest.  相似文献   

6.
Explicit construction of Ramsey graphs or graphs with no large clique or independent set, has remained a challenging open problem for a long time. While Erdös’ probabilistic argument shows the existence of graphs on 2n vertices with no clique or independent set of size 2 n , the best explicit constructions achieve a far weaker bound. There is a connection between Ramsey graph constructions and polynomial representations of Boolean functions due to Grolmusz; a low degree representation for the OR function can be used to explicitly construct Ramsey graphs [17,18]. We generalize the above relation by proposing a new framework. We propose a new definition of OR representations: a pair of polynomials represent the OR function if the union of their zero sets contains all points in {0, 1} n except the origin. We give a simple construction of a Ramsey graph using such polynomials. Furthermore, we show that all the known algebraic constructions, ones to due to Frankl-Wilson [12], Grolmusz [18] and Alon [2] are captured by this framework; they can all be derived from various OR representations of degree O(√n) based on symmetric polynomials. Thus the barrier to better Ramsey constructions through such algebraic methods appears to be the construction of lower degree representations. Using new algebraic techniques, we show that better bounds cannot be obtained using symmetric polynomials.  相似文献   

7.
A Grundy n-coloring of a finite graph is a coloring of the points of the graph with the non-negative integers smaller than n such that each point is adjacent to some point of each smaller color but to none of the same color. The Grundy number of a graph is the maximum n for which it has a Grundy n-coloring. Characterizations are given of the families of finite graphs G such that for each induced subgraph H of G: (1) the Grundy number of H is equal to the chromatic number of H; (2) the Grundy number of H is equal to the maximum clique size of H; (3) the achromatic number of H is equal to the chromatic number of H; (4) the achromatic number of H is equal to the maximum clique size of H. The definitions are further extended to infinite graphs, and some of the above characterizations are shown to be true for denumerable graphs and locally finite graphs.  相似文献   

8.
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G=(V,E) and an integer k≥0, we ask whether there exists a subset VV with |V|≥k such that the induced subgraph G[V] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time -approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.  相似文献   

9.
In this paper, we focus on the directed minimum degree spanning tree problem and the minimum time broadcast problem. Firstly, we propose a polynomial time algorithm for the minimum degree spanning tree problem in directed acyclic graphs. The algorithm starts with an arbitrary spanning tree, and iteratively reduces the number of vertices of maximum degree. We can prove that the algorithm must reduce a vertex of the maximum degree for each phase, and finally result in an optimal tree. The algorithm terminates in O(mnlogn) time, where m and n are the numbers of edges and vertices of the graph, respectively. Moreover, we apply the new algorithm to the minimum time broadcast problem. Two consequences for directed acyclic graphs are: (1) the problem under the vertex-disjoint paths mode can be approximated within a factor of of the optimum in O(mnlogn)-time; (2) the problem under the edge-disjoint paths mode can be approximated within a factor of O(Δ*/logΔ*) of the optimum in O(mnlogn)-time, where Δ* is the minimum k such that there is a spanning tree of the graph with maximum degree k.  相似文献   

10.
A graph is weakly triangulated if neither the graph nor its complement contains a chordless cycle with five or more vertices as an induced subgraph. We use a new characterization of weakly triangulated graphs to solve certain optimization problems for these graphs. Specifically, an algorithm which runs inO((n + e)n 3) time is presented which solves the maximum clique and minimum colouring problems for weakly triangulated graphs; performing the algorithm on the complement gives a solution to the maximum stable set and minimum clique covering problems. Also, anO((n + e)n 4) time algorithm is presented which solves the weighted versions of these problems.The author acknowledges the support of an N.S.E.R.C. Canada postgraduate scholarship.The author acknowledges the support of the U.S. Air Force Office of Scientific Research under grant number AFOSR 0271 to Rutgers University.  相似文献   

11.
 It is well known that the comparability graph of any partially ordered set of n elements contains either a clique or an independent set of size at least . In this note we show that any graph of n vertices which is the union of two comparability graphs on the same vertex set, contains either a clique or an independent set of size at least . On the other hand, there exist such graphs for which the size of any clique or independent set is at most n 0.4118. Similar results are obtained for graphs which are unions of a fixed number k comparability graphs. We also show that the same bounds hold for unions of perfect graphs. Received: November 1, 1999 Final version received: December 1, 2000  相似文献   

12.
The clique graph of G, K(G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K-1(G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.  相似文献   

13.
We color the nodes of a graph by first applying successive contractions to non-adjacent nodes until we get a clique; then we color the clique and decontract the graph. We show that this algorithm provides a minimum coloring and a maximum clique for any Meyniel graph by using a simple rule for choosing which nodes are to be contracted. This O(n3) algorithm is much simpler than those already existing for Meyniel graphs. Moreover, the optimality of this algorithm for Meyniel graphs provides an alternate nice proof of the following result of Hoàng: a graph G is Meyniel if and only if, for any induced subgraph of G, each node belongs to a stable set that meets all maximal cliques. Finally we give a new characterization for Meyniel graphs.  相似文献   

14.
We present an infinite set A of finite graphs such that for any graph G e A the order | V(k n (G))| of the n-th iterated clique graph k n (G) is a linear function of n. We also give examples of graphs G such that | V(k n(G))| is a polynomial of any given positive degree.  相似文献   

15.
We study the problem of scheduling n non-preemptive jobs on m unrelated parallel machines. Each machine can process a specified subset of the jobs. If a job is assigned to a machine, then it occupies a specified time interval on the machine. Each assignment of a job to a machine yields a value. The objective is to find a subset of the jobs and their feasible assignments to the machines such that the total value is maximized. The problem is NP-hard in the strong sense. We reduce the problem to finding a maximum weight clique in a graph and survey available solution methods. Furthermore, based on the peculiar properties of graphs, we propose an exact solution algorithm and five heuristics. We conduct computer experiments to assess the performance of our and other existing heuristics. The computational results show that our heuristics outperform the existing heuristics.  相似文献   

16.
We define a family of graphs, called the clique separable graphs, characterized by the fact that they have completely connected cut sets by which we decompose them into parts such that when no further decomposition is possible we have a set of simple subgraphs. For example the chordal graphs and the i-triangulated graphs are clique separable graphs.The purpose of this paper is to describe polynomial time algorithms for the recognition of the clique separable graphs and for finding them a minimum coloring and a maximum clique.  相似文献   

17.
The minimum covering problem in weighted graphs with n vertices is transformed in time O(n2) to the maximum matching problem with n or n + 1 vertices, and conversely.  相似文献   

18.
We consider the problem of finding a strictly fundamental cycle basis of minimum weight in the cycle space associated with an undirected connected graph G, where a nonnegative weight is assigned to each edge of G and the total weight of a basis is defined as the sum of the weights of all the cycles in the basis. Several heuristics have been proposed to tackle this NP-hard problem, which has some interesting applications. In this paper we show that this problem is APX-hard, even when restricted to unweighted graphs, and hence does not admit a polynomial-time approximation scheme, unless P=NP. Using a recent result on the approximability of lower-stretch spanning trees (Elkin et al. (2005) [7]), we obtain that the problem is approximable within O(log2nloglogn) for arbitrary graphs. We obtain tighter approximability bounds for dense graphs. In particular, the problem restricted to complete graphs admits a polynomial-time approximation scheme.  相似文献   

19.
Permutation diagrams have been used in circuit design to model a set of single point nets crossing a channel, where the minimum number of layers needed to realize the diagram equals the clique number ω(G) of its permutation graph, the value of which can be calculated in O(nlogn) time. We consider a generalization of this model motivated by “standard cell” technology in which the numbers on each side of the channel are partitioned into consecutive subsequences, or cells, each of which can be left unchanged or flipped (i.e., reversed). We ask, for what choice of flippings will the resulting clique number be minimum or maximum. We show that when one side of the channel is fixed (no flipping), an optimal flipping for the other side can be found in O(nlogn) time for the maximum clique number, and that when both sides are free this can be solved in O(n2) time. We also prove NP-completeness of finding a flipping that gives a minimum clique number, even when one side of the channel is fixed, and even when the size of the cells is restricted to be less than a small constant. Moreover, since the complement of a permutation graph is also a permutation graph, the same complexity results hold for the stable set (independence) number. In the process of the NP-completeness proof we also prove NP-completeness of a restricted variant of a scheduling problem. This new NP-completeness result may be of independent interest.  相似文献   

20.
A split graph is a graph whose vertex set admits a partition into a stable set and a clique. The chromatic indexes for some subsets of split graphs, such as split graphs with odd maximum degree and split-indifference graphs, are known. However, for the general class, the problem remains unsolved. This paper presents new results about the classification problem for split graphs as a contribution in the direction of solving the entire problem for this class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号