首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Two waveguide CO2 lasers, a quartz waveguide and an alumina waveguide, have been studied on the 00°2–[10°l,02°1]I,II sequence bands. The use of an intra-cavity hot CO2 cell, which is a part of the waveguide, suppresses the regular-band transitions. The quartz waveguide laser has a total of 58 lines lasing on both the 9.4 µm and 10.4 µ,m sequence bands. The alumina waveguide laser has 36 lines lasing on the 10.4 µm sequence band and twice the output power of the quartz waveguide laser, whereas lasing on the 9.4 µm sequence band is difficult. The lasers can be operated on the selected single line without line jumping problem. The frequency tuning range of the strong lines is limited by the free spectral range of the cavity.  相似文献   

2.
Line dependent saturation has been studied in a CO2 waveguide laser, operating cw in 100 lines of the 9 m and 10 m bands. In both bands, for constant discharge conditions, the saturation intensity is found to be strictly inversely proportional to the small signal gain for lines in the range J=2 to J=48 in both the P and the R branches. For lasers operating well above threshold this implies an output power which is essentially independent of the line number. The effect is verified experimentally, and discussed theoretically.Supported by the Danish Science Research Council under grant no. 11-7777  相似文献   

3.
The paper is based on C12O2 16 rotational constants and line frequency data gained from laser frequency measurements performed recently. Equations for transition frequencies and their standard deviations have been derived. A list is presented containing accurate 10.4 and 9.4 μm line frequencies and their relative and absolute standard deviations; also wavenumbers and wavelengths are given for each line. For transitions usually observed in CO2 lasers the relative standard deviations are on the order of a few megahertz, the absolute accuracy is about 25 MHz for the 10.4 μm band and about 18 MHz for the 9.4=μm band.  相似文献   

4.
2 . By using a 0.7% prepulse that precedes the main pulse by 5 ns and applying a total pump energy of 100 J or less, the J=0-1 lasing is at least one order of magnitude higher than the non-lasing background. For the 32.6-nm line of Ti, the 25.5-nm line of Fe, and the 23.1-nm line of Ni, gain coefficients of (±) 4.20.4cm-1, (±) 3.90.3cm-1, and (±) 3.60.6cm-1, respectively, were measured for 2.4-cm-long curved targets, resulting in gain–length products of ∼10. Angle-resolved spectra indicate a beam divergence of 3 mrad (FWHM), typically. The space-resolved spectra show that the J=0-1 lasing lines are emitted from an approximately 60-μm-wide (FWHM) plasma region, whereas the nearby continuum emission is produced in a considerably broader plasma region of ∼250 μm. Lasing at 25.5 nm in neon-like iron was observed at a pump power as low as 180 GW (∼9 TW/cm2), with, however, considerable shot-to-shot scatter in the absolute laser output. Received: 5 September 1997/Revised version: 10 November 1997  相似文献   

5.
Many new laser lines between 100 μm and 1 mm have been detected by optically pumping several polyatomic molecules with C16O2 and C18O2 lasers. Tentative assignment of the lasing transitions has been possible in some cases.  相似文献   

6.
The partially deuterated isotopes of methanol, CH2DOH and CHD2OH, have been reinvestigated as sources of far-infrared (FIR) laser emissions using an optically pumped molecular laser (OPML) system recently designed for wavelengths below 150 μm. With this system, 10 new FIR laser emissions from these isotopes ranging from 32.8 to 174.6 μm have been discovered. This includes the shortest known OPML emission from CHD2OH, at 32.8 μm. These lines are reported with their operating pressure, polarizations relative to the CO2 pump laser and wavelengths, measured to ±0.5 μm. In addition, polarizations for three previously observed FIR laser lines from CHD2OH were measured for the first time. This paper is dedicated to the memory of Dr. K.M. Evenson, a pioneer in the field for his role in the development of optically pumped molecular lasers and their use in laser frequency measurements and the laser magnetic resonance technique. His scientific expertise, guidance, mentoring and friendship will be greatly missed. Received: 27 March 2002 / Published online: 8 May 2002  相似文献   

7.
Zirconia titania organically modified silicate (ZrO2-TiO2-ORMOSIL) thin film waveguides of thickness from 0.4 to 7.0 μm were synthesized using low temperature sol–gel method. Narrow linewidth distributed feedback (DFB) lasing was demonstrated in rhodamine 6G-doped ZrO2-TiO2-ORMOSIL waveguides. Simultaneous tuning of multiple-output wavelengths was achieved in the dye-doped waveguides by varying the period of the gain modulation generated by a nanosecond Nd:YAG laser at 532 nm. As many as eight separate output wavelengths were observed for a planar ZrO2-TiO2-ORMOSIL waveguide of thickness 7.0-μm. The output polarizations of the DFB waveguide lasers can be tuned by varying the polarization of the crossing pump beams. TE and TM optical waves belonging to the same propagation mode were generated by crossing two polarized pump beams, resulting in an effective double of the number of output wavelengths. Continuous tuning of the polarized laser outputs was also achieved by varying the crossing angle.  相似文献   

8.
The operation of a cw FIR laser in the presence of a strong electric field is described. A hybrid metal-dielectric waveguide is used and the cavity length is scanned to study how the frequency and power of the laser depend on the field strength. The results have also been checked by heterodyning with a conventional reference laser. We report the results obtained for the 496 μm line of CH3F and the 70.5 μm and 119 μm lines of CH3OH. A large frequency tunability of almost ±40 MHz is obtained in the best case with power levels in the mW range. A very simple theoretical model accounts for the experimental results. We also report the appearance of a new FIR line at about 204 μm when CH3OH is pumped by the 9 μmP(34) of CO2 in the presence of an electric field larger than 1.2 KV/cm.  相似文献   

9.
Respectively, 41 and 36 new cw far-infrared lasing lines have been observed using a waveguide resonator in CH3OD and CD3OD pumped by a low-pressure CO2 laser emitting in the 9.4, 10.4 m regular bands and in the 10.8 m hot band. The wavelength range was 46.6 m–1.67 mm in CH3OD and 53.6 m–1 mm in CD3OD.  相似文献   

10.
In this work we report new FIR laser lines from CD3OD optically pumped by a CO2 waveguide laser. The wide tunability of this laser (290 MHz) makes it possible to pump absorption lines with large frequency offset relative to the CO2 laser line center, which are not possible by using conventional CO2 lasers. As a consequence 19 new laser lines have been discovered, ranging from 38.0 m to 455.2 m in wavelength. For all lines, precise frequency offset measurements between the CO2 line center and the center of the absorber CD3OD line were performed using the transferred Lamb-dip technique. We also present direct Doppler-free offset measurements of infrared absorption, obtained within the FIR laser cavity itself, using optoacoustic detection.Work supported by FAPESP, CNPq, FAP-Brasil and CNR-Italy  相似文献   

11.
We have increased the frequency tunability of our CW waveguide CO2 lasers by means of an acoustooptic amplitude modulator, operating at the fixed frequency of 90 MHz. The up-shifted, or down-shifted, laser optical sideband can be generated independently by adjusting the orientation of the modulator. The efficiency is larger than 50%. The frequency tunability of the CO2 laser around each laser line is thus increased by 180 MHz. To demonstrate the possibilities of this method, a source composed of the above modulator and of a CW, 300 MHz tunable waveguide CO2 laser has been used for the search of new large offset FIR laser lines from optically pumped CH3OH and13CH3OH molecules. As a result 15 and 10 new large offset laser lines were discovered respectively. New assignments of some laser lines are also proposed. We have also measured the Stark effect, the offset, and the polarization of other already known lines. In particular a Stark effect frequency tuning of about 1 GHz is demonstrated for a laser line at 208.399 m.  相似文献   

12.
High-temperature, high-power, and continuous-wave (CW) operation of quantum-cascade lasers with 35 active/injector stages at λ∼8.85 μm above room temperature is achieved without using a buried heterostructure. At this long wavelength, the use of a wider ridge waveguide in an epilayer-down bonding scheme leads to a superior performance of the laser. For a high-reflectivity-coated 21 μm×3 mm laser, the output power of 237 mW and the threshold current density of 1.44 kA/cm2 at 298 K under CW mode are obtained with a maximum wall-plug efficiency of 1.7%. Further improvements were observed by using a 4-mm-long cavity. The device exhibits 294 mW of output power at 298 K and it operates at a high temperature, even up to 358 K (85°C). The full widths at half-maximum of the laser beam in CW operation for the parallel and the perpendicular far-field patterns are 25°and 63°, respectively.  相似文献   

13.
Room-temperature (RT) continuous-wave (CW) operation of the 405-nm ridge-waveguide (RW) InGaN/GaN quantum-well diode lasers equipped with the n-type GaN substrate and two contacts on both sides of the structure has been investigated with the aid of the comprehensive self-consistent simulation model. As expected, the mounting configuration (p-side up or down) has been found to have a crucial impact on the diode laser performance. For the RT CW threshold operation of the otherwise identical diode laser, the p-side up RW laser exhibits as high as nearly 68°C maximal active-region temperature increase whereas an analogous increase for the p-side down laser was equal to only 24°C. Our simulation reveals that the lowest room-temperature lasing threshold may be expected for relatively narrow and deep ridges. For the structure under consideration, the lowest threshold current density of 5.75 kA/cm2 has been determined for the 2.2-μm ridge width and the 400-nm etching depth. Then, the active-region temperature increase was as low as only 24 K over RT. For wider 5-μm ridge, this increase is twice higher. An impact of etching depth is more essential for narrower ridges. Quite high values (between 120 and 140 K) of the characteristic parameter T0 convince very good thermal properties of the above laser.  相似文献   

14.
Optical crosstalk from a 1.3 μm laser to a 1.55 μm photodiode on a single InP substrate, and its suppression within 1.3 μm/1.5 μm Y-junction transceiver OEICs, has been analyzed experimentally. The results indicate that the optical crosstalk suppression is limited by the accumulated light in the OEIC substrate coming mainly from the spontaneous emission of the integrated laser and from stray light at the laser–waveguide butt joint interface. For OEICs, integrating lasers and photodetectors, the achievable optical intra-chip crosstalk at present will be in the range of 30–40 dB at the required small die dimensions. Received: 16 May 2001 / / Published online: 23 October 2001  相似文献   

15.
2 and two diode lasers as pump sources are presented. A single-mode Fabry–Pérot-type tunable diode laser (TDL) and an external-cavity diode laser (ECL) were combined to generate radiation in the mid-infrared region near 7.2 μm. With a TDL at a wavelength of approximately 1290 nm and an ECL emitting between 1504 and 1589 nm it was possible to carry out spectroscopic experiments concerning SO2 at five different phasematching points between 1350 and 1400 cm-1 by fixing the wavelength of one pump laser and tuning the wavelength of the other. With an input power of 8 mW for the single-mode Fabry–Pérot-type diode laser and 6 mW for the external-cavity laser an output power of about 10 nW was generated. Using the tuning capabilities of the external-cavity laser a spectral region up to 5 cm-1 could be covered within one scan. Measurements of SO2 absorption lines at low pressure demonstrate the high-resolution features of the spectrometer. Moreover, these data provide new direct experimental phasematching data for the rarely investigated spectral region at 7.2 μm. Received: 27 October 1997/Revised version: 8 May 1998  相似文献   

16.
B. M. Walsh 《Laser Physics》2010,20(3):622-634
Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 μm and Er at 2.9 μm) as well as Nd:YAG (1.06 and 1.3 μm) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.  相似文献   

17.
A CO2-laser/microwave-sideband tunable infrared source system has been newly built at the University of New Brunswick (UNB) in Canada. The system employs a high-resolution CO2 laser of Evenson design that lases on a wide range of lines including hot and sequence band lines as well as high-J lines of the regular 9.6 and 10.6 m bands. The frequency of the CO2 laser is stabilized to the Lamb dip in the 4.3 m fluorescence signal in an external CO2 cell. Microwave (MW) sidebands are generated in a Cheo-type infrared waveguide modulator driven by a synthesized sweeper and a traveling wave tube (TWT) amplifier. The MW sidebands appear on either side of the CO2 laser line, and are individually separated from the carrier by a tunable Fabry-Perot etalon. The sidebands currently have a typical power of about 1.4 mW and a continuous frequency tuning range of 22 GHz (from ± to ±18 GHz) when 5 W laser power and 15 W microwave power are delivered to the modulator. Details are given on the source construction and measured performance characteristics. Features of the source and its planned applications are discussed.  相似文献   

18.
We have theoretically investigated the thermal characteristics of double-channel ridge–waveguide InGaAs/InAlAs/InP quantum cascade lasers (QCLs) using a two-dimensional heat dissipation model. The temperature distribution, heat flow, and thermal conductance (G th) of QCLs were obtained through the thermal simulation. A thick electroplated Au around the laser ridges helps to improve the heat dissipation from devices, being good enough to substitute the buried heterostructure (BH) by InP regrowth for epilayer-up bonded lasers. The effects of the device geometry (i.e., ridge width and cavity length) on the G th of QCLs were investigated. With 5 μm thick electroplated Au, the G th is increased with the decrease of ridge width, indicating an improvement from G th=177 W/K⋅cm2 at W=40 μm to G th=301 W/K⋅cm2 at W=9 μm for 2 mm long lasers. For the 9 μm×2 mm epilayer-down bonded laser with 5 μm thick electroplated Au, the use of InP contact layer leads to a further improvement of 13% in G th, and it was totally raised by 45% corresponding to 436 W/K⋅cm2 compared to the epilayer-up bonded laser with InGaAs contact layer. It is found that the epilayer-down bonded 9 μm wide BH laser with InP contact layer leads to the highest G th=449 W/K⋅cm2. The theoretical results were also compared with available obtained experimentally data.  相似文献   

19.
We report, to our knowledge, the first active channel waveguide in Ti:sapphire. We have created ∼1.4-μm high ribs in a ∼10-μm thick Ti:sapphire planar waveguide by reactive ion etching. Following excitation by an Ar-ion laser, the rib structure showed channel-waveguide fluorescence emission. The mode profiles and the beam-parameter values (M2) were measured. The coupling efficiency of fluorescence emission into a single-mode fiber was an order of magnitude higher than for fluorescence from unstructured planar regions of the waveguide. Such devices are of interest as low-threshold tunable lasers and as broadband light sources in low-coherence interferometry. Received: 22 December 2002 / Revised version: 30 March 2002 / Published online: 8 August 2002  相似文献   

20.
The Er:YAG and the CO2 laser are competitors in the field of hard tissue ablation. The use of Er:YAG lasers (2.94 μm, pulse length L of 100 to 200 μs) show smaller areas of thermal defects then ‘‘superpulsed’’ CO2 lasers with pulse lengths of approximately 100 μs. Only the development of a Q-switched CO2 laser (9.6 μm, τL=250 ns) allowed for similar results. In this paper new results for the Er:YAG and the Q-switched CO2 laser under the influence of water spray will be presented. Several parameters are of special interest for these investigations: the specific ablation energy, which shows a minimum for the CO2 laser at an energy density of 9 J/cm 2 and a broad shallow minimum in the range of 10 to 70 J/cm2 for the Er:YAG laser, and comparison of the cut-shape and depth. Surface effects and cutting velocity are discussed based on SEM pictures. Received: 19 July 2000 / Revised version: 1 November 2000 / Published online: 30 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号