首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum dots (QDs) hold great potential for applications in nanomedicine, however, only a few studies investigate their toxic- and bio-effects. Using Escherichia coli (E. coli) cells as model, we found that CdTe QDs exhibited a dose-dependent inhibitory effect on cell growth by microcalorimetric technique and optical density (OD(600)). The growth rate constants (k) were determined, which showed that they were related to the concentration of QDs. The mechanism of cytotoxicity of QDs was also studied through the attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra, fluorescence (FL) polarization, and scanning electron microscopy (SEM). It was clear that the cell out membrane was changed or damaged by the addition of QDs. Taken together, the results indicated that CdTe QDs have cytotoxic effects on E. coli cells, and this effects might attribute to the damaged structure of the cell out membrane, thus QDs and by-products (free radicals, reactive oxygen species (ROS), and free Cd(2+)) which might enter the cells.  相似文献   

2.
The cytotoxicity and DNA damage caused by thioglycolic acid(TGA)-capped cadmium telluride(CdTe)quantum dots(QDs)to hepatocyte line HL-7702 were investigated.Cell viability was measured by 3-(4,5-dimeth...  相似文献   

3.
We demonstrate that the coupling system of negatively capped CdSe/ZnS QDs with an oxidized Cytochrome c (Cyt c) is capable of the fluorescent imaging of a superoxide radical (O(2)˙?) with high sensitivity and specificity in living cells, without interference from other Reactive Oxygen Species (ROS) or relevant intracellular components.  相似文献   

4.
《中国化学快报》2023,34(1):107262
The transformation of quantum dots (QDs) by organisms has attracted broad attention but remains unclear. Understanding of the metabolites helps to reveal the transformation pathway of QDs. Cd containing-metallothionein (MT) are the main species formed by Cd released from CdSe QDs in HepG2 cells, while speciation analysis of Cd containing MTs remains a challenge because MTs has several subisoforms and can bind with several metals. Herein, we built a hyphenated platform for speciation analysis of QDs in HepG2 cells after treatment with CdSe/ZnS QDs. The Cd-containing MTs were separated in reversed phase high performance liquid chromatography (RP-HPLC) and subsequently online detected by inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) parallelly. Four groups of Cd-containing metabolites were found by detecting Cd in ICP-MS. Their structures were identified in ESI-Q-TOF-MS and further confirmed with standards of four subisoforms of MT, including N-terminal acetylation MT2a, N-terminal acetylation MT1e, N-terminal acetylation MT1g and MT1m. Each group of them contains various stoichiometry of Cd/Zn. The metabolites of QDs remain same while the concentrations of each metabolite and its stoichiometry of Cd/Zn vary for different incubation concentration/time. This work provides a new parallel hyphenation technique of HPLC-ICP-MS/ESI-MS with high separation resolution and powerful detection ability, and the obtained results provide detailed metabolism information of QDs in HepG2 cells after treatment of CdSe/ZnS QDs, contributing to deep exploration of the functional mechanisms of QDs in organisms.  相似文献   

5.
在水相合成的CdTe量子点的体系中通过分批次加入新鲜配制的NaHSe和CdCl2溶液,制备出了CdSe包覆层数不同的CdTe/CdSe核壳量子点,并着重考察了CdSe包覆层数对CdTe/CdSe核壳量子点的光学特性以及微观结构的影响.与CdTe量子点相比,CdSe单层包覆的CdTe/CdSe核壳量子点的吸收峰和荧光发射峰出现明显红移;随着CdSe包覆层数的增多,CdTe/CdSe核壳量子点吸收光谱的覆盖范围向长波方向扩展,荧光发射峰强度逐步下降,荧光寿命大幅延长,体现出Ⅱ型核壳量子点的特征.X射线衍射(XRD)分析表明,随着CdSe包覆层数的增多,CdTe/CdSe核壳量子点的粉末衍射峰由CdTe衍射峰位置逐步向CdSe衍射峰位置靠近.CdTe/CdSe核壳量子点因其延伸到近红外区域的宽吸收特性致使其在太阳电池领域具有重要的应用前景.  相似文献   

6.
Highly fluorescent water-soluble CdSe/ZnS (core/shell) quantum dots (QDs) as a fluorescent Cu2+ ion probe were synthesized using thiacalix[4]arene carboxylic acid (TCC) as a surface coating agent. Hydrophobic trioctylphosphine oxide (TOPO) capped CdSe/ZnS QDs were overcoated with TCC in tetrahydrofuran at room temperature, and deprotonation of the carboxyl groups of TCC resulted in the formation of water-soluble QDs. The surface structure of the QDs was characterized by using transmission electron microscopy (TEM) and fluorescence correlation spectroscopy (FCS). TEM images showed that TCC-coated QDs were monodispersed with the particle size (core-shell moiety) of approximately 5 nm. Hydrodynamic diameter of the TCC-coated QDs was determined to be 8.9 nm by FCS, showing that the thickness of the surface organic layer of the QDs was approximately 2 nm. These results indicate that the surface layer of TCC-coated QDs forms a bilayer structure consisting of TOPO and TCC molecules. TCC-coated CdSe/ZnS QDs were highly fluorescent (quantum yield, 0.21) compared to the QDs surface-modified with mercaptoacetic acid and mercaptoundecanoic acid. Fluorescence of the TCC-coated QDs was effectively quenched by Cu2+ ions even in the presence of other transition metal ions such as Cd2+, Zn2+, Co2+, Fe2+, and Fe3+ ions in the same solution. The Stern-Volmer plot for the fluorescence quenching by Cu2+ ions showed a linear relationship up to 30 microM of Cu2+ ions. The ion selectivity of TCC-coated QDs was determined by measurements of fluorescence responses towards biologically important transition metal ions (50 microM) including Fe2+, Fe3+, Co2+>Zn2+, Cd2+. The fluorescence of TCC-coated QDs was almost insensitive to other biologically important ions such as Na+, K+, Mg2+, and Ca2+, suggesting that TCC-coated QDs can be used as a fluorescent Cu2+ ion probe for biological samples. A possible quenching mechanism by Cu2+ ions was also discussed on the basis of a Langmuir-type adsorption isotherm.  相似文献   

7.
Imaging pancreatic cancer using surface-functionalized quantum dots   总被引:1,自引:0,他引:1  
In this study, CdSe/CdS/ZnS quantum dots (QDs) were used as optical contrast agent for imaging pancreatic cancer cells in vitro using transferrin and anti-Claudin-4 as targeting ligands. CdSe/CdS/ZnS was chosen because the CdSe/CdS/ZnS QDs have better photoluminescence (PL) efficiency and stability than those of CdSe/ZnS. The transferrin-mediated targeting is demonstrated in both a cell-free coprecipitation assay as well as using in vitro confocal microscopy. Pancreatic cancer specific uptake is also demonstrated using the monoclonal antibody anti-Claudin-4. This targeted QD platform will be further modified for the purpose of developing as an early detection imaging tool for pancreatic cancer.  相似文献   

8.
The photoluminescence of mercaptoacetic acid (MAA)-capped CdSe/ZnSe/ZnS semiconductor nanocrystal quantum dots (QDs) in SKOV-3 human ovarian cancer cells is pH-dependent, suggesting applications in which QDs serve as intracellular pH sensors. In both fixed and living cells the fluorescence intensity of intracellular MAA-capped QDs (MAA QDs) increases monotonically with increasing pH. The electrophoretic mobility of MAA QDs also increases with pH, indicating an association between surface charging and fluorescence emission. MAA dissociates from the ZnS outer shell at low pH, resulting in aggregation and loss of solubility, and this may also contribute to the MAA QD fluorescence changes observed in the intracellular environment.  相似文献   

9.
Toxicities of CdSe and CdSe/CdS quantum dots(QDs) synthesized by ultrasound-assisted methods were investigated in vitro and in vivo.Five human cell lines were used to assess the cytotoxicity of as-prepared CdSe and CdSe/CdS by assays of MTT viability,red blood cell hemolysis,flow cytometry,and fluorescence imaging.The results show that these QDs may be cytotoxic by their influence in S and G2 phases in cell cycles.The cytotoxicity of QDs depends on both the physicochemical properties and related to target cells.  相似文献   

10.
Herein, we report the synthesis of aqueous CdTe/CdSe type‐II core–shell quantum dots (QDs) in which 3‐mercaptopropionic acid is used as the capping agent. The CdTe QDs and CdTe/CdSe core–shell QDs are characterized by X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM), steady‐state absorption, and emission spectroscopy. A red shift in the steady‐state absorption and emission bands is observed with increasing CdSe shell thickness over CdTe QDs. The XRD pattern indicates that the peaks are shifted to higher angles after growth of the CdSe shell on the CdTe QDs. HR‐TEM images of both CdTe and CdTe/CdSe QDs indicate that the particles are spherical, with a good shape homogeneity, and that the particle size increases by about 2 nm after shell formation. In the time‐resolved emission studies, we observe that the average emission lifetime (τav) increases to 23.5 ns for CdTe/CdSe (for the thickest shell) as compared to CdTe QDs (τav=12 ns). The twofold increment in the average emission lifetime indicates an efficient charge separation in type‐II CdTe/CdSe core–shell QDs. Transient absorption studies suggest that both the carrier cooling and the charge‐transfer dynamics are affected by the presence of traps in the CdTe QDs and CdTe/CdSe core–shell QDs. Carrier quenching experiments indicate that hole traps strongly affect the carrier cooling dynamics in CdTe/CdSe core–shell QDs.  相似文献   

11.
以3-巯基丙酸作为修饰剂,在水溶液中合成了稳定的CdSe/ZnS量子点(QDs),透射电镜观察所合成量子点的形貌近似球形,粒径约为25 nm.吸收光谱与荧光光谱的研究表明,CdSe QDs在410 nm处有最大吸收峰,而CdSe/ZnS QDs的最大吸收峰在470 nm处,CdSe/ZnS QDs的荧光强度是CdSe QDs的11倍.考察了缓冲溶液的体积、pH值、反应温度、反应时间对体系荧光的影响.在最佳实验条件下,体系的荧光强度与BSA的浓度呈线性关系,线性响应范围为0.746×10-7~4.48×10-7 mol/L,检出限为3.846×10-10 mol/L.并且CdSe/ZnS QDs荧光强度基本保持稳定,可达两个多月.该方法应用于合成样品的测定,结果满意.  相似文献   

12.
The synthesis of a novel water‐soluble Mn‐doped CdTe/ZnS core‐shell quantum dots using a proposed ultrasonic assistant method and 3‐mercaptopropionic acid (MPA) as stabilizer is descried. To obtain a high luminescent intensity, post‐preparative treatments, including the pH value, reaction temperature, reflux time and atmosphere, have been investigated. For an excellent fluorescence of Mn‐doped CdTe/ZnS, the optimal conditions were pH 11, reflux temperature 100°C and reflux time 3 h under N2 atmosphere. While for phosphorescent Mn‐doped CdTe/ZnS QDs, the synthesis at pH 11, reflux temperature 100°C and reflux time 3 h under air atmosphere gave the best strong phosphorescence. The characterizations of Mn‐doped CdTe/ZnS QDs were also identified using AFM, IR, powder XRD and thermogravimetric analysis. The data indicated that the photochemical stability and the photoluminescence of CdTe QDs are greatly enhanced by the outer inorganic ZnS shell, and the doping Mn2+ ions in the as‐prepared quantum dots contribute to strong luminescence. The strong luminescence of Mn‐doped CdTe/ZnS QDs reflected that Mn ions act as recombination centers for the excited electron‐hole pairs, attributing to the transition from the triplet state (4T1) to the ground state (6A1) of the Mn2+ ions. All the experiments demonstrated that the surface states played important roles in the optical properties of Mn‐doped CdTe/ZnS core‐shell quantum dots.  相似文献   

13.
Based on 15-crown-5 functionalized CdSe/ZnS quantum dots (QDs), we report a novel fluorogenic sensor to probe K+ ions in H2O; recognition of K+ can be achieved via the F?rster type of energy transfer between two different color QDs, so that [K+] of the order of 10(-6) M can be promptly detected.  相似文献   

14.
在水相中以巯基乙酸(mercaptoacetic acid, MA)为稳定剂合成了CdSe、CdTe、CdTe/ZnS量子点及谷胱甘肽(glutathione, GSH)为稳定剂合成了CdTe量子点,然后通过卵磷脂和胆固醇修饰制得相应的量子点脂质体。溶血实验证实GSH修饰量子点的溶血率低于MA修饰的量子点45%;脂质体修饰后,量子点的溶血率<5%,达到生物医用材料要求。不同表面修饰的量子点对小鼠毒性存在明显差异,荧光显微镜观察组织切片证实量子点在小鼠体内主要分布在肺、肾、胸腺等组织中,而脂质体量子点在脑组  相似文献   

15.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

16.
用L-半胱氨酸(L-cysteine)作为稳定剂,以制备的CdTe量子点为核模板,水相合成了具有近红外发光的Ⅱ型核壳CdTe/CdSe半导体量子点。实验考察了合成温度,核模板的尺寸和组分比等因素对合成高质量的CdTe/CdSe量子点的影响。用紫外-可见吸收和荧光光谱研究了合成的量子点的光学性质。在优化的合成条件下,荧光发射光谱在586~753nm范围连续可调,荧光量子产率高达68%;通过X-射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)对合成的Ⅱ型核壳CdTe/CdSe量子点进行了结构和形貌表征。  相似文献   

17.
Surface ligands of semiconductor quantum dots (QDs) critically influence their properties and functionalities. It is of strong interest to understand the structural characteristics of surface ligands and how they interact with the QDs. Three quantum dot (QD) systems (CdSe, ZnSe, and ZnS) with primary aliphatic amine capping ligands were characterized primarily by FT-IR spectroscopy as well as NMR, UV-vis, and fluorescence spectroscopy, and by transmission electron microscopy (TEM). Representative primary amines ranging from 8 to 16 carbons were examined in the vapor phase, KBr pellet, and neat and were compared to the QD samples. The strongest hydrogen-bonding effects of the adsorbed ligands were observed in CdSe QDs with the weakest observed in ZnS QDs. There was an observed splitting of the N-H scissoring mode from 1610 cm(-1) in the neat sample to 1544 and 1635 cm(-1) when bound to CdSe QDs, which had the largest splitting of this type. The splitting is attributed to amine ligands bound to either Cd or Se surface sites, respectively. The effect of exposure of the QDs dispersed in nonpolar medium to methanol as a crashing agent was also examined. In the CdSe system, the Cd-bound scissoring mode disappeared, possibly due to methanol replacing surface cadmium sites. The opposite was observed for ZnSe QDs, in which the Se-bound scissoring mode disappeared. It was concluded that surface coverage and ligand bonding partners could be characterized by FT-IR and that selective removal of surface ligands could be achieved through introduction of competitive binding interactions at the surface.  相似文献   

18.
CdSe/ZnS core-shell quantum dots (QDs) were efficiently tethered onto polyamidoamine dendrimer-modified multi-walled carbon nanotubes (MWCNTs) by covalent linkage and mercapto-mediated assembly. The obtained MWCNT-QD hybrids were both photophysically and morphologically characterized. The QDs are well-distributed on single nanotube surface in high density and the assembly of QDs onto MWCNTs does not change the fluorescence emission wavelength of QDs but significantly decreases the emission density. Cytotoxicity of MWCNT-QD hybrids to HeLa cells and their fluorescence property in living cell system were evaluated in detail. The hybrids show a little effect on cell viability even at very high concentration (100 μg mL(-1)). Moreover, they possess intense red fluorescence signal under optical fluorescence microscopy and good fluorescence stability over 72-h exposure in living cell system.  相似文献   

19.
Photocurrent generation from CdSe/ZnS (core/shell) quantum dots (QDs) in a photoelectrochemical cell was proposed to perform a bioaffinity biosensor in this study. The photocurrent of QDs is reversible and methylene blue as an electron transfer mediator causes a four‐fold increase in the photocurrent. We further present quantitative photoelectrochemical detection of biotin conjugated QDs on the avidin immobilized ITO electrodes. A linear calibration graph was obtained in the range of 4 and 18 nM of biotin conjugated QDs with a coefficient of determination of 0.997. Results imply that QDs can be successfully used as photoelectroactive labels for the photoelectrochemical biosensor systems.  相似文献   

20.
Original organic capping TOPO/TOP groups of CdSe and CdSe/ZnS quantum dots (QDs), from mother solution were replaced with 2_mercaptoethanol, which was chosen as model compound, in order to achieve water solubility. Obtained water dispersions of CdSe and CdSe/ZnS QDs were characterized by UV/VIS absorption and luminescence techniques. Luminescence measurements revealed that bare cores are very sensitive to surface capping, transfer into water diminished emission intensity. Core/shell, CdSe/ZnS, QDs are much more resistant to changes of the capping and solvent, and significant part of emission intensity was preserved in water. The article is published in the original.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号