首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The sulfide-tellurides Ba(3)Cu(17-x)(S,Te)(11) and Ba(3)Cu(17-x)(S,Te)(11.5) were synthesized from the elements in stoichiometric ratios heated to 1073 K, followed by slow cooling to 873 K over 100 h. Ba(3)Cu(17-x)(S,Te)(11) is isostructural to Ba(3)Cu(17-x)(Se,Te)(11) when [S] > [Te], space group R ?3m, with lattice dimensions of a = 12.009(1) ?, c = 27.764(2) ?, V = 3467.6(5) ?(3), for Ba(3)Cu(15.7(4))S(7.051(5))Te(3.949) (Z = 6). The structure is composed of Cu atoms forming paired hexagonal antiprisms, capped on the two outer hexagonal faces, where each Cu atom is tetrahedrally coordinated by four Q (= S, Te) atoms. The new variant is formed when [Te] > [S]; then Ba(3)Cu(17-x)(S,Te)(11.5) adopts space group Fm3?m with a = 17.2095(8) ?, V = 5096.9(4) ?(3), for Ba(3)Cu(15.6(2))S(5.33(4))Te(6.17) (Z = 8). This structure consists of eight Te-centered Cu(16) icosioctahedra per cell interconnected by cubic Cu(8) units centered by Q atoms. Electronic structure calculations and property measurements illustrate that these compounds behave as extrinsic p-type semiconductors-toward metallic behavior for the latter compound. With standard oxidation states Ba(2+), Cu(+), and Q(2-), the electron precise formulas are Ba(3)Cu(16)Q(11) and Ba(3)Cu(17)Q(11.5).  相似文献   

2.
The telluride Ba(2)Cu(7-x)Te(6) was synthesized from the elements in stoichiometric ratios, heated to 1073 K, followed by slow cooling to 873 K over 120 h. Ba(2)Cu(7-x)Te(6) crystallizes in space group P2(1)/m with lattice dimensions of a = 6.8591(7) ?, b = 12.1439(12) ?, c = 9.0198(9) ?, β = 110.7509(14)°, V = 702.58(12) ?(3), and Z = 2. The structure is comprised of Cu atoms forming a six-membered ring and triangles, interconnected to an infinite ribbon of Cu atoms. The ribbons are connected to each other via Cu-Te bonds to yield a three-dimensional structure, wherein each Cu atom is tetrahedrally coordinated by four Te atoms. A special feature of this telluride is the occurrence of a quasi-linear Te atom chain, which causes one-dimensional metallic properties, in accordance with electronic structure calculations and property measurements.  相似文献   

3.
Nanocrystals of multicomponent chalcogenides, such as Cu(2)ZnSnS(4) (CZTS), are potential building blocks for low-cost thin-film photovoltaics (PVs). CZTS PV devices with modest efficiencies have been realized through postdeposition annealing at high temperatures in Se vapor. However, little is known about the precise role of Se in the CZTS system. We report the direct solution-phase synthesis and characterization of Cu(2)ZnSn(S(1-x)Se(x))(4) nanocrystals (0 ≤ x ≤ 1) with the aim of probing the role of Se incorporation into CZTS. Our results indicate that increasing the amount of Se increases the lattice parameters, slightly decreases the band gap, and most importantly increases the electrical conductivity of the nanocrystals without a need for annealing.  相似文献   

4.
Liu CW  Hung CM  Santra BK  Wang JC  Kao HM  Lin Z 《Inorganic chemistry》2003,42(25):8551-8556
The cluster (Cu8(mu8-Se)[S2P(OEt)2]6)0.54(Cu6[S2P(OEt)2]6)0.46 (2) was prepared in 78% yield from the reaction of Cu8(Se)[Se2P(OPr)2]6 (1) and NH4S2P(OEt)2 in toluene. The central selenide ion in 2 was characterized by 77Se NMR at delta -976 ppm. The simulated solid-state 31P NMR spectrum shows two components with an intensity ratio close to 55:45. The peak centered at 100.7 ppm is assigned to the 31P nuclei in the hexanuclear copper cluster, and that at 101.1 ppm is due to the octanuclear copper cluster. The single-crystal X-ray diffraction analysis confirms the cocrystallization structures of Cu8(Se)[S2P(OEt)2]6 (54%) and Cu6[S2P(OEt)2]6 (46%) (2: trigonal, space group R3, a=21.0139(13) A, c=11.404(3) A, gamma=120 degrees, Z=3). While the octanuclear copper cluster possesses a 3-fold crystallographic axis which pass through the Cu2, Se, and Cu(2A) atoms, the six copper atoms having the S6 point group symmetry in Cu6[S2P(OEt)2]6 form a compressed octahedron. The Cu8(mu8-Se) cubic core in Cu8(mu8-Se)[S2P(OEt)2]6 is larger in size than the metal core in Cu8(mu8-Se)[Se2P(OPr)2]6 (1) although the bite distance of the Se-containing bridging ligand is larger than that of the S ligand. To understand the nature of the structure contraction of the metal core and metal-mu8-Se interaction, molecular orbital calculations have been carried out at the B3LYP level of density functional theory. MO calculations suggest that Cu-mu8-Se interactions are not very strong and a half bond can be formally assigned to each Cu-mu8-Se bond. Moderate Cu...Cu repulsion exists, and it is the bridging ligands that are responsible for the observed Cu...Cu contacts. Hence, the S-ligating copper clusters have greater Cu...Cu separations because each Cu carries more positive charge in the presence of the more electronegative S-containing ligands.  相似文献   

5.
Homoleptic copper(I) and silver(I) complexes [M(n)(L-L)(2)(n)()](BF(4))(n)() (M = Cu or Ag; L-L = MeECH(2)EMe; E = S, Se or Te) have been prepared and characterized by analysis, FAB mass spectrometry, and IR and multinuclear NMR spectroscopy ((1)H, (77)Se, (125)Te, (63)Cu and (109)Ag). The single-crystal X-ray structures of [Cu(n)()(MeSeCH(2)SeMe)(2)(n)()](PF(6))(n)() (orthorhombic, P2(1)2(1)2(1), a = 10.879(7) ?, b = 16.073(7) ?, c = 9.19(1) ?, Z = 4) and [Ag(n)()(MeSeCH(2)SeMe)(2)(n)()](BF(4))(n)() (monoclinic, P2(1)/c, a = 14.546(9) ?, b = 14.65(1) ?, c = 30.203(9) ?, Z = 4) reveal extended three-dimensional cationic frameworks in the solid state which contain large cylindrical or rectangular channels accommodating the PF(6)(-) or BF(4)(-) counterions. In contrast, a single-crystal X-ray structure of [Cu(n)()(MeSCH(2)SMe)(2)(n)()](PF(6))(n)().nMeNO(2) (orthorhombic, Pbcn, a = 15.506(3) ?, b = 8.934(2) ?, c = 25.859(3) ?, Z = 8) shows tetrahedral Cu(I) ions coordinated to bridging dithioethers forming an cationic ribbon-like arrangement of 8-membered rings. Adjacent rings are linked by the Cu atoms. Variable temperature NMR studies have been used to probe various exchange processes occurring in solution in these systems.  相似文献   

6.
Cui Y  Assoud A  Xu J  Kleinke H 《Inorganic chemistry》2007,46(4):1215-1221
The title compounds were prepared from the elements between 600 and 800 degrees C in evacuated silica tubes. Both tellurides, Ba7Au2Te14 and Ba6.76Cu2.42Te14, form ternary variants of the NaBa6Cu3Te14 type, space group P63/mcm, with a = 14.2593(7) A, c = 9.2726(8) A, and V = 1632.8(2) A3 (Z = 2) for Ba7Au2Te14 and a = 14.1332(4) A, c = 9.2108(6) A, and V = 1593.3(1) A3 (Z = 2) for Ba6.76Cu2.42Te14. The Na site is filled with a Ba atom (deficient in case of the Cu telluride) and the Cu site with 66.5(3)% Au and 61.7(8)% Cu. An additional site is filled with 9.5(7)% Cu in the structure of Ba6.76Cu2.42Te14. These structures are comprised of bent Te32- units and AuTe4/CuTe4 tetrahedra, forming channels filled with Ba cations. The BaTe9 polyhedra are connecting the channels to a three-dimensional structure. According to the formulations (Ba2+)7(Au+)2(Te32-)3(Te2-)5 and (Ba2+)6.76(Cu+)2.42(Te32-)3(Te2-)5, the materials are electron-precise with 16 positive charges equalizing the 16 negative charges. Correspondingly, both tellurides are semiconductors, as experimentally confirmed, with calculated band gaps of 0.7 and 1.0 eV, respectively.  相似文献   

7.
Liu JW  Wang P  Chen L 《Inorganic chemistry》2011,50(12):5706-5713
Three semiconducting ternary sulfides have been synthesized from the mixture of elements with about 20% excess of sulfur (to establish oxidant rich conditions) by solid-state reactions at high temperature. Ba(12)In(4)S(19) ≡ (Ba(2+))(12)(In(3+))(4)(S(2-))(17)(S(2))(2-), 1, crystallizes in the trigonal space group R ?3 with a = 9.6182(5) ?, b = 9.6182(5) ?, c = 75.393(7) ?, and Z = 6, with a unique long period-stacking structure of a combination of monometallic InS(4) tetrahedra, linear dimeric In(2)S(7) tetrahedra, disulfide S(2)(2-) anions, and isolated sulfide S(2-) anions that is further enveloped by Ba(2+) cations. Ba(4)In(2)S(8) ≡ (Ba(2+))(4)(In(3+))(2)(S(2-))(6)(S(2))(2-), 2, crystallizes in the triclinic space group P ?1? with a = 6.236(2) ?, b = 10.014(4) ?, c = 13.033(5) ?, α = 104.236(6)°, β = 90.412(4)°, γ = 91.052(6)°, and Z = 2. Ba(4)Ga(2)S(8) ≡ (Ba(2+))(4)(Ga(3+))(2)(S(2-))(6)(S(2))(2-), 3, crystallizes in the monoclinic P2(1)/c with a = 12.739(5) ?, b = 6.201(2) ?, c = 19.830(8) ?, β = 104.254(6)° and Z = 4. Compounds 2 and 3 represent the first one-dimensional (1D) chain structure in ternary Ba/M/S (M = In, Ga) systems. The optical band gaps of 1 and 3 are measured to be around 2.55 eV, which agrees with their yellow color and the calculation results. The CASTEP calculations also reveal that the disulfide S(2)(2-) anions in 1-3 contribute mainly to the bottom of the conduction bands and the top of valence bands, and thus determine the band gaps.  相似文献   

8.
Crystals of Ba(2)Cu(PO(4))(2) have been grown in a low-temperature eutectic flux of 32% KCl and 68% CuCl (mp = 140 degrees C). The X-ray single-crystal structure analysis shows that this barium copper(II) phosphate crystallizes in a monoclinic lattice with a = 12.160(4) ?, b = 5.133(4) ?, c = 6.885(4) ?, beta = 105.42(4) degrees, and V = 414.3(4) ?(3); C2/m (No. 12); Z = 2. The structure has been refined by the least-squares method to a final solution with R = 0.020, R(w) = 0.026, and GOF = 1.05. The framework of the title compound consists of [Cu(PO(4))(2)](infinity) linear chains with Ba(2+) cations residing between these parallel chains. The chains are composed of an array of Cu(2+) cations that are doubly bridged by PO(4) anions. Each pair of bridging PO(4) tetrahedra are in a staggered configuration above and below the CuO(4) square plane, resulting in a linear chain with a long Cu---Cu separation distance, 5.13 ? ( identical withb). This quasi-one-dimensional framework is unusual among the Cu(2+)-based phosphates. Magnetic susceptibility data shows Curie-Weiss paramagnetic behavior in the range of ca. 190-300 K and a possible antiferro-to-ferromagnetic transition at approximately 8 K. In this paper, the synthesis, structure, and properties of the title compound are presented. A structural comparison to a closely related vanadyl (VO)(2+) phosphate, Ba(2)(VO)(PO(4))(2).H(2)O, as well as Na(2)CuP(2)O(7) will be discussed.  相似文献   

9.
We report a new platform for design of soluble precursors for CuInSe(2) (CIS), Cu(In(1-x)Ga(x))Se(2) (CIGS), and Cu(2)ZnSn(S,Se)(4) (CZTS) phases for thin-film potovoltaics. To form these complex phases, we used colloidal nanocrystals (NCs) with metal chalcogenide complexes (MCCs) as surface ligands. The MCC ligands both provided colloidal stability and represented essential components of target phase. To obtain soluble precursors for CuInSe(2), we used Cu(2-x)Se NCs capped with In(2)Se(4)(2-) MCC surface ligands or CuInSe(2) NCs capped with {In(2)Cu(2)Se(4)S(3)}(3-) MCCs. A mixture of Cu(2-x)Se and ZnS NCs, both capped with Sn(2)S(6)(4-) or Sn(2)Se(6)(4-) ligands was used for solution deposition of CZTS films. Upon thermal annealing, the inorganic ligands reacted with NC cores forming well-crystallized pure ternary and quaternary phases. Solution-processed CIS and CZTS films featured large grain size and high phase purity, confirming the prospects of this approach for practical applications.  相似文献   

10.
The pyridineselenolate (2-Se-NC(5)H(4), (SePy)) and the 3-(trimethylsilyl)pyridineselenolate (3-Me(3)Si-2-Se-NC(5)H(4) (SePy)) ligands form air-stable homoleptic coordination compounds of Cu(I) { [Cu(SePy)](4) (1) and [Cu(SePy)](4) (2)} and In(III) {In(SePy)(3) (3) and In(SePy)(3) (4)}. Mass spectroscopic characterization of the Cu(I) compounds indicated a tetrametallic core, and this was confirmed with a single-crystal X-ray structural characterization of crystalline 1 and 2, which both contain a tetrametallic cluster of Cu(I) ions bound to two doubly bridging Se atoms and a pyridine nitrogen. The Cu coordination sphere is completed with two strong Cu-Cu bonds and one weaker Cu-Cu interaction. The indium compounds 3 and 4 are each distorted fac-octahedral molecules with chelating SePy ligands. These compounds are useful low-temperature precursors to the binary selenides. Both 3 and 4 sublime intact; 3 thermally decomposes to give In(2)Se(3). The Cu clusters do not sublime intact but still decompose to give metal selenide phases: 2 decomposes to give pure alpha-CuSe at low temperatures and increasing amounts of Cu(2)(-)(x)()Se at elevated temperatures, while 3 decomposes to give a mixture of CuSe phases at all temperatures. Crystal data (Mo Kalpha: 1, 153(5) K; 2-4, 293(2) K) are as follows: 1, monoclinic space group C2/c, a = 20.643(5) ?, b = 16.967(2) ?, c = 16.025(2) ?, beta = 114.16(2) degrees, Z = 8; 2, tetragonal space group I4(1)/a, a = 14.756(3) ?, c = 19.925(3) ?, Z = 4; 3, trigonal space group P&thremacr;c1, a = 13.352(2) ?, c = 13.526(2) ?, Z = 4; 4, monoclinic space group P2(1)/c, a = 9.793(1) ?, b = 20.828(6) ?, c = 16.505(1) ?, beta = 96.69(1) degrees, Z = 4.  相似文献   

11.
Bandgap engineering is important in light-absorption optimization of nanocrystals (NCs) for applications such as highly efficient solar cells. Herein, a facile one-pot method is developed to synthesize monodispersed ternary alloyed copper sulfide selenide (Cu(2-x)S(y)Se(1-y)) NCs with tunable composition, structure, and morphology. The energy bandgaps can be tuned with the chalcogen ratio, and the crystal structure of the NCs is found to produce an effect on their bandgap and light absorption. The results are significant in bandgap engineering of semiconductor NCs.  相似文献   

12.
Wang C  Hughbanks T 《Inorganic chemistry》1996,35(24):6987-6994
The synthesis of the group IV ternary chalcogenides Zr(6)MTe(2) (M = Mn, Fe, Co, Ni, Ru, Pt) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) is reported, as are the single-crystal structures of Zr(6)FeTe(2), Zr(6)Fe(0.6)Se(2.4), and Zr(6)Fe(0.57)S(2.43). The structure of Zr(6)FeTe(2) was refined in the hexagonal space group P&sixmacr;2m (No. 189, Z = 1) with lattice parameters a = 7.7515(5) ? and c = 3.6262(6) ?, and the structures of Zr(6)Fe(0.6)Se(2.4) and Zr(6)Fe(0.57)S(2.43) were refined in the orthorhombic space group Pnnm (No. 58, Z = 4) with lattice parameters a = 12.737(2) ?, b = 15.780(2) ?, and c = 3.5809(6) ? and a = 12.519(4) ?, b = 15.436(2) ?, and c = 3.4966(6) ?, respectively. The cell parameters of Mn-, Co-, Ni-, Ru-, and Pt-containing tellurides were also determined. The Zr(6)ZTe(2) compounds are isostructural with Zr(6)CoAl(2), while Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) were found to adopt a variant of the Ta(2)P-type structure. Chains of condensed M-centered, tetrakaidecahedra of zirconium constitute the basic structural unit in all these compounds. The modes of cross-linking that give rise to the Zr(6)FeTe(2) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() structures, differences among the title compounds, and the influence of chalcogen size differences are discussed. The stoichiometric nature of Zr(6)FeTe(2) and its contrast with sulfur and selenium congeners apparently result from a Te-Fe size mismatch. The importance of stabilization of both Zr(6)FeSe(2) and Zr(6)FeTe(2) compounds by polar intermetallic Zr-Fe bonding is underscored by a bonding analysis derived from electronic band structure calculations.  相似文献   

13.
Three new compounds, Sc(6)AgTe(2), Sc(6)Cu(0.80(2))Te(2.20(2)), and Sc(6)CdTe(2), were prepared by high-temperature solid state techniques, and the structures were determined by single-crystal X-ray diffraction to be orthorhombic, Pnma (No. 62, Z = 4) with a = 20.094(9) A, 19.853(5) A, 20.08(1) A, b = 3.913(1) A, 3.914(1) A, 3.915(2) A, and c = 10.688(2) A, 10.644(2) A, 10.679(5) A, respectively, at 23 degrees C. The compounds are isotypic with Sc(6)PdTe(2) and represent the first ternary metal-rich rare-earth-metal chalcogenides containing group 11 or group 12 elements. The structure can be viewed as heterometal sheets lying parallel to the b-c planes that are separated by isolated tellurium atoms. These sheets can also be viewed as a polymerization of two different types of metal chains in Sc(2)Te (blades and zigzag chains) by heterometal (M) replacements of some intervening tellurium atoms. Extended Hückel band calculations reveal that the interior atoms in the metal network achieve negative formal Mulliken charges while Sc atoms on the exterior that have tellurium neighbors have positive values. The heterometal-metal bonding enhances the overlap populations of zigzag chains and blades relative to those in Sc(2)Te. The calculation results also indicate that these compounds are metallic, as usual.  相似文献   

14.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

15.
Novel SHG effective inorganic open-framework chalcohalides, Ba(3)AGa(5)Se(10)Cl(2) (A = Cs, Rb and K), have been synthesized by high temperature solid state reactions. These compounds crystallize in the tetragonal space group I ?4 (No.82) with a = b = 8.7348(6) - 8.6341(7) ?, c = 15.697(3) - 15.644(2) ?, V = 1197.6(3) - 1166.2(2) ?(3) on going from Cs to K. The polar framework of (3)(∞)[Ga(5)Se(10)](5-) is constructed by nonpolar GaSe(4)(5- )tetrahedron (T1) and polar supertetrahedral cluster Ga(4)Se(10)(8-) (T2) in a zinc-blende topological structure with Ba/A cations and Cl anions residing in the tunnels. Remarkably, Ba(3)CsGa(5)Se(10)Cl(2) exhibits the strongest intensity at 2.05 μm (about 100 times that of the benchmark AgGaS(2) in the particle size of 30-46 μm) among chalcogenides, halides, and chalcohalides. Furthermore, these compounds are also the first open-framework compounds with red photoluminescent emissions. The Vienna ab initio theoretical studies analyze electronic structures and linear and nonlinear optical properties.  相似文献   

16.
The antiferromagnetic structures of the layered oxychalcogenides (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) (0 ≤ x ≤ 1) have been determined by powder neutron diffraction. In these compounds Co(2+) is coordinated by four oxide ions in a square plane and two sulfide ions at the apexes of an extremely tetragonally elongated octahedron; the polyhedra share oxide vertexes. The magnetic reflections present in the diffraction patterns can in all cases be indexed using a √2a × √2a × c expansion of the nuclear cell, and nearest-neighbor Co(2+) moments couple antiferromagnetically within the CoO(2) planes. The ordered magnetic moment of Co(2+) in Sr(2)CoO(2)Cu(2)S(2) (x = 0) is 3.8(1) μ(B) at 5 K, consistent with high-spin Co(2+) ions carrying three unpaired electrons and with an additional significant unquenched orbital component. Exposure of this compound to moist air is shown to result in copper deficiency and a decrease in the size of the ordered moment to about 2.5 μ(B); there is a strong correlation between the size of the long-range ordered moment and the occupancy of the Cu site. Both the tetragonal elongation of the CoO(4)S(2) polyhedron and the ordered moment in (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) increase with increasing Ba content, and in Ba(2)CoO(2)Cu(2)S(2), which has Co(2+) in an environment that is close to purely square planar, the ordered moment of 4.5(1) μ(B) at 5 K is over 0.7 μ(B) larger than that in Sr(2)CoO(2)Cu(2)S(2), so the unquenched orbital component in this case is even larger than that observed in octahedral Co(2+) systems such as CoO. The experimental observations of antiferromagnetic ground states and the changes in properties resulting from replacement of Sr by Ba are supported by ab initio calculations on Sr(2)CoO(2)Cu(2)S(2) and Ba(2)CoO(2)Cu(2)S(2). The large orbital moments in these systems apparently result from spin-orbit mixing of the unequally populated d(xz), d(yz), and d(z(2)) orbitals, which are reckoned to be almost degenerate when the CoO(4)S(2) polyhedron reaches its maximum elongation. The magnitudes of the ordered moments in high-spin Co(2+) oxide, oxychalcogenide, and oxyhalide systems are shown to correlate well with the tetragonal elongation of the coordination environment. The large orbital moments lead to an apparently magnetostrictive distortion of the crystal structures below the Nee?l temperature, with the symmetry lowered from tetragonal I4/mmm to orthorhombic Immm and the size of the distortion correlating well with the size of the long-range ordered moment for all compositions and for temperature-dependent data gathered on Ba(2)CoO(2)Cu(2)S(2).  相似文献   

17.
Assoud A  Xu J  Kleinke H 《Inorganic chemistry》2007,46(23):9906-9911
The title compounds were prepared from the elements in evacuated silica tubes at 650 degrees C, followed by slow cooling. Ba2Ag4Se5 forms a new structure type, space group C2/m, with a=16.189(2) A, b=4.5528(6) A, c=9.2500(1) A, beta=124.572(3) degrees, and V=561.4(1) A3 (Z=2). A maximum of 44% of the Ag atoms may be replaced with Cu atoms without changing the structure type. The crystal structure is composed of Ag4Se(5)4- layers, interconnected via the Ba2+ cations. The Ag atoms show irregular [3+1] coordination by the Se atoms, and the Ba atoms are located in capped square antiprisms formed by Se atoms. Most intriguing is the unprecedented occurrence of linear Se(3)4- units. According to the formulation (Ba2+)2(Ag+)4Se(3)4-(Se2-)2, this selenide is electron-precise with eight positive charges equalizing the eight negative charges. Electronic structure calculations indicated the presence of a band gap, as was experimentally confirmed: the electrical conductivity measurement revealed a gap of 0.6 eV for Ba2CuAg3Se5.  相似文献   

18.
The (Na(1-x)Cu(x))(2)Ta(4)O(11) (0 ≤ x ≤ 0.78) solid-solution was synthesized within evacuated fused-silica vessels and characterized by powder X-ray diffraction techniques (space group: R3c (#167), Z = 6, a = 6.2061(2)-6.2131(2) ?, c = 36.712(1)-36.861(1) ?, for x = 0.37, 0.57, and 0.78). The structure consists of single layers of TaO(7) pentagonal bipyramids as well as layers of isolated TaO(6) octahedra surrounded by Na(+) and Cu(+) cations. Full-profile Rietveld refinements revealed a site-differentiated substitution of Na(+) cations located in the 12c (Wyckoff) crystallographic site for Cu(+) cations in the 18d crystallographic site. This site differentiation is driven by the linear coordination geometry afforded at the Cu(+) site compared to the distorted seven-coordinate geometry of the Na(+) site. Compositions more Cu-rich than x ~ 0.78, that is, closer to "Cu(2)Ta(4)O(11)", could not be synthesized owing to the destabilizing Na(+)/Cu(+) vacancies that increase with x up to the highest attainable value of ~26%. The UV-vis diffuse reflectance spectra show a significant red-shift of the bandgap size from ~4.0 eV to ~2.65 eV with increasing Cu(+) content across the series. Electronic structure calculations using the TB-LMTO-ASA approach show that the reduction in bandgap size arises from the introduction of Cu 3d(10) orbitals and the formation of a new higher-energy valence band. A direct bandgap transition emerges at k = Γ that is derived from the filled Cu 3d(10) and the empty Ta 5d(0) orbitals, including a small amount of mixing with the O 2p orbitals. The resulting conduction and valence band energies are determined to favorably bracket the redox potentials for water reduction and oxidation, meeting the thermodynamic requirement for photocatalytic water-splitting reactions.  相似文献   

19.
Several members of the new family A(1-x)M(4-x)Bi(11+x)Se21 (A = K, Rb, Cs; M = Sn, Pb) were prepared by direct combination of A2Se, Bi2Se3, Sn (or Pb), and Se at 800 degrees C. The single-crystal structures of K(0.54)Sn(3.54)Bi(11.46)Se21, K(1.46)Pb(3.08)Bi(11.46)Se21, Rb(0.69)Pb(3.69)Bi(11.31)Se21, and Cs(0.65)Pb(3.65)Bi(11.35)Se21 were determined. The compounds A(1-x)M(4-x)Bi(11+x) Se21 crystallize in a new structure type with the monoclinic space group C2/m, in which building units of the Bi2Te3 and NaCl structure type join to give rise to a novel kind of three-dimensional anionic framework with alkali-ion-filled tunnels. The building units are assembled from distorted, edge-sharing (Bi,Sn)Se6 octahedra. Bi and Sn/Pb atoms are disordered over the metal sites of the chalcogenide network, while the alkali site is not fully occupied. A grand homologous series Km(M6Se8)m(M(5+n)Se(9+n)) has been identified of which the compounds A(1-x)M(4-x)Bi(11+x)Se21 are members. We discuss here the crystal structure, charge-transport properties, and very low thermal conductivity of A(1-x)M(4-x)Bi(11+x)Se21.  相似文献   

20.
The Cs-Cu-Q (Q = S, Se) system has been investigated using copper metal, cesium chloride, and alkali-metal polychalcogenide salts under mild hydrothermal reaction conditions. Heteropolychalcogenide salts and mixtures of known polysulfide and polyselenide salts have been used as reagents. The reaction products contain the alpha-CsCuQ(4) and CsCuQ(6) structures. The alpha-CsCuQ(4) phase exhibits a smooth transition in lattice parameters from the pure sulfur to the pure selenium phases, based on Vegard's law. The CsCuQ(6) phase has been prepared as the pure sulfur analog and a selenium rich analog. The single-crystal structures of the disordered compounds alpha-CsCuS(2)Se(2) (P2(1)2(1)2(1), Z = 4, a = 5.439(1) ?, b = 8.878(2) ?, c = 13.762(4) ?) and CsCuS(1.6)Se(4.4) (P&onemacr;, Z = 2, a = 11.253(4) ?, b = 11.585(2) ?, c = 7.211(2) ?, alpha = 92.93 degrees, beta = 100.94 degrees, gamma = 74.51 degrees ) have been solved using a correlated-site occupancy model. These disordered structures display a polychalcogenide geometry in which the sulfur atoms prefer positions that are bound to copper. The optical absorption spectra of these materials have been investigated. The optical band gap varies as a function of the sulfur-selenium ratio. Extended Hückel crystal orbital calculations have been performed to investigate the electronic structure and bonding in these compounds in an attempt to explain the site distribution of sulfur and selenium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号