首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Cyclocondensation of 2,3,3‐trimefhyl‐3H‐indoles 2 with malonates 3 gives 8‐hydroxy‐10,10‐dimefhyl‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 , which were halogenated in position 7, 8 and 9 with sulfuryl chloride, bromine or phosphoroxychloride to give the corresponding halo‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indoles 5, 6, 7 and 8 . Amination affords the 8‐amino‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indol‐6‐one 9 . Nitration gives either the 10,10‐dimethyl‐7‐nitro‐10H‐pyrido[1,2‐a]indoles 10 or 10,10‐dimethyl‐7‐hydroxy‐10H‐pyrido[1,2‐a]indoles 11 , depending on the conditions.  相似文献   

2.
Treatment of 2‐bromoaryl pyrrole/indol‐2‐yl ketones with cesium carbonate in DMF resulted in the formation of 9H‐pyrrolo[1,2‐a]indol‐9‐ones and 10H‐indolo[1,2‐a]indol‐10‐ones in moderate to excellent isolated yields.  相似文献   

3.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

4.
An auto oxidation-rearrangement product 4 was isolated from a high dilution reaction of ninhydrin with 3,4,5-trimethoxyaniline in water. A general synthesis of this compound and its derivatives 4–6 was devised by oxidation of tetrahydroindeno[1,2-b]indol-10-ones 1–3 with sodium periodate to give isoindolo[2,1-a]-indole-6,11-diones 4–6 in good yield. Compounds 4–6 can be easily transformed into spiro[1H-isobenzofuran-1,2′-2H-indole]-3,3′-diones 8–10 , spiro[2H-indole-2,1′-1H-isoindole]-3,3′-diones 11–13 and isoindole[1,2-a:2′,1′-b]pyrimidine-5,15-diones 15, 16 in high yields. Analogous reactions were performed on 3-amino-5a, 10a-dihydroxybenzo[b]indeno[2,1-d]furan-10-one ( 17 ) to give a dibenzoxocintrione 18 , spiro-[benzofuran-2,1′-isobenzofuran]-3,3′-dione 19 and an isoindol-1-one 20 .  相似文献   

5.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

6.
The synthesis of new pyrido[3′,2′:5,6]thiopyrano[3,2‐b]indol‐5(6H)‐ones was accomplished by the Fischer‐indole cyclization of some 2,3‐dihydro‐3‐phenylhydrazonothiopyrano[2,3‐b]pyridin‐4(4H)‐ones, obtained from the 2,3‐dihydro‐3‐hydroxymethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐one, by the Japp‐Klingemann reaction. 6H‐Pyrido[3′,2′:5,6]thiopyrano[4,3‐b]quinolines were obtained by reaction of 2,3‐dihydrothiopyrano‐[2,3‐b]pyridin‐4(4H)‐ones with o‐aminobenzaldehyde or 5‐substituted isatins. The preparation of some derivatives, functionalized with an alkylamino‐substituted side chain, is also described.  相似文献   

7.
An efficient synthetic route towards N‐methylated or nonmethylated 3,4‐dihydrocyclopent[b]indol‐1(2H)‐ones ( 3 ) and 1,2,3,9‐tetrahydrocarbazol‐4(4H)‐one ( 10 ) was elaborated, based on Pd‐catalyzed intramolecular Heck reaction. The chemoselectivity of the cyclization was studied in the case of the bi‐ and trifunctional substrates 12 and 17 , respectively. In the latter case, depending on the catalyst, either the brominated indole 18 or the tetracyclic compound 19 were obtained by single and double Heck reaction, respectively.  相似文献   

8.
Three‐component reaction between ninhydrin–phenol adducts, dialkyl acetylenedicarboxylates, and triphenylphosphine was investigated. Utilizing this protocol, dialkyl 10‐oxo‐10H‐4b,9b‐(epoxyethanooxy)indeno[1,2‐b]benzofuran‐12,13‐dicarboxylates as functionalized heterocyclic [4,3,3] propellanes was synthesized in 6‐endo‐trig cyclization mode. 8‐hydroxyquinoline showed serendipitous reactivity and produced para substituted adduct in the reaction with ninhydrin in acetic acid media and hence produced dialkyl 8a‐(4‐(alkoxycarbonyl)‐2‐oxo‐2H‐pyrano[3,2‐h]quinolin‐6‐yl)‐8‐oxo‐8,8a‐dihydro‐2H‐indeno[2,1‐b]furan‐2,3‐dicarboxylate in the reaction with dialkyl acetylenedicarboxylates and PPh3.  相似文献   

9.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

10.
Stirring an equimolar mixture of ninhydrin 1 and 2-aminochromen-4-ones 2 in CH3COOH at room temperature produced 6a,11a-dihydroxy-6H-chromeno[2,3-b]indeno[2,1-d]pyrrole-11,12(6aH,11aH)-diones 3, which on heating with aromatic amines 6 in acetic acid produced 11b-hydroxy-7-N-arylimino-6H-chromeno[2,3-b]isoindolo[1,2-e]pyrrole-12,13(11bH)-diones 7.  相似文献   

11.
A one‐pot, four‐component reaction for the efficient synthesis of novel spiro[indeno[2,1‐b]quinoxaline‐11,4′‐pyran]‐2′‐amines by using InCl3 is described. The syntheses are achieved by reacting ninhydrin with 1,2‐diaminobenzenes to give indenoquinoxalines, which are trapped in situ by alkyl malonates and various α‐methylencarbonyl compounds through cyclization, providing multifunctionalized spiro‐substituted indeno[2,1‐b]quinoxaline‐11,4′‐pyran‐2′‐amines.  相似文献   

12.
Zusammenfassung Intramolekulare Cyclisierungsreaktionen von 3-Phenyl-benzo[b]thiophen-2-carbonsäurechlorid und von 2-Phenyl-benzo[b]thiophen-3-carbonsäurechlorid lieferten 6-Oxo-6H-benz[b]indeno[1,2-d]thiophen bzw. 10-Oxo-10H-benz[b]indeno[2,1-d]thiophen.
Contributions to the chemistry of sulfur containing heterocycles, IV.: 6H-Benzo[b]indeno[1,2-d]thiophene and 10H-benzo-[b]indeno[1,2-d]thiophene
Intramolecular cyclization reactions of 3-phenyl-benzo[b]thiophene-2-carbonyl chloride and of 2-phenyl-benzo[b]-thiophene-3-carbonyl chloride gave 6-oxo-6H-benz[b]indeno-[1,2-d]thiophene and 10-oxo-10H-benz[b]indeno[2,1-d]thiophene, respectively.


3. Mitt.:F. Sauter, Mh. Chem.99, 2100 (1968).  相似文献   

13.
3‐Azido‐2‐phenylindan‐1‐one ( 4 ), which was obtained from 3‐chloro‐2‐phenylindan‐1‐one ( 3 ), cyclizes on thermolysis to 5H‐indeno[1,2‐b]indol‐10‐one ( 5 ). Reaction of 3‐azido‐2‐phenylindan‐1‐one ( 4 ) with triphenylphosphane gives 2‐phenyl‐3‐(triphenylphosphoranylideneamino)‐indan‐1‐one ( 6 ), which can be hydrolyzed to 3‐amino‐2‐phenylindan‐1‐one ( 7 ). Attempts to perform a similar cyclization sequence with 3‐chloro‐2‐pyridylindan‐1‐ones failed.  相似文献   

14.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

15.
A synthesis of isoindolo[2,1‐a]quinazolinedione derivatives, coupled with a 1,2,3‐triazole ring system, via the reaction of isatoic anhydride, HC?CCH2NH2, and 2‐formylbenzoic acid is described, which led to the formation of the isoindolo[2,1‐a]quinazoline‐5,11‐dione scaffold having a C?C bond that participated in a click reaction with various organic azides.  相似文献   

16.
Oxidation of some derivatives of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐one have been investigated in detail using lead(IV) acetate in acetic acid under reflux conditions and periodic acid in aqueous ethanol at room temperature. We realized that during the first 5–15 minutes of the oxidation reactions in lead(IV) acetate/acetic acid system, 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives have been synthesized chemo selectively, while, if the reaction mixtures stirred for additional 3 hours, the main products would be 2‐(2‐(Methoxycarbonyl)‐3‐oxo‐2,3‐dihydrobenzofuran‐2‐yl)benzoic acids. Moreover, room temperature oxidation of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐ones by periodic acid (H5IO6), leads to the formation of 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives in good to excellent yields.  相似文献   

17.
5‐Oxo‐5H‐[1,3]thiazolo[3,2‐a]pyrimidine‐6‐carboxylic acid ( 4 ), and 6‐methylimidazo[2,1‐b]thiazole‐5‐carboxylic acid ( 17 ) were reacted with amines 6a‐i by the reaction with oxalyl chloride and N, N‐di methyl‐formamide as a catalyst into primary and secondary amide derivatives 7‐14 and 19‐22. From compound 24 N,N'‐disubstituted ureas 26, 27 and perhydroimidazo[1,5‐c]thiazole 29 derivatives of imidazo[2,1‐b]thiazole were prepared. By nmr analysis of compound 29 , the existence of two stereoisomers resulting from both optical, due to centre of chirality at C7′a, and conformational isomerism, due to restricted C5? N6′ bond rotation were proved.  相似文献   

18.
Pyrano[3,2‐b]indole derivatives 2 – 6 were synthesized in good yields from 1‐acetyl‐2‐benzylidene‐2,3‐dihydro‐1H‐indol‐3‐ones 8 and 13 – 15 by an intramolecular hetero‐Diels? Alder reaction. The structures of compounds 2a, 3a, 4, 5 , and 6 were unambiguously established by X‐ray analysis. Compounds 4 and 5 were further aromatized to the corresponding derivatives 16 and 17 , respectively.  相似文献   

19.
A series of 6‐aminoindolo[2,1‐a]isoquinoline‐5‐carbonitriles 4 have been prepared by treatment of 2‐(2‐bromophenyl)‐1H‐indoles 1 , available from 1‐(2‐bromophenyl)ethanones or 1‐(2‐bromophenyl)propan‐1‐ones by using Fischer indole synthesis, with propanedinitrile in the presence of a catalytic amount of CuBr and an excess of K2CO3 in DMSO at 100°.  相似文献   

20.
The palladium‐catalyzed reaction of 2‐alkynylanilines with 2‐(2‐bromobenzylidene)cyclobutanone as an efficient route to 7,8‐dihydrobenzo[b]naphtho[2,3‐d]azocin‐6(5 H)‐ones was developed. The fused eight‐membered ring was constructed conveniently. During the reaction process, double carbometalation was involved, which resulted in excellent selectivity with the formation of three new bonds. This transformation is highly efficient and leads to fused polycycles in good to excellent yields with good functional group tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号