首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Silacyclobutane was discovered to be an efficient C?H bond silylation reagent. Under the catalysis of RhI/TMS‐segphos, silacyclobutane undergoes sequential C?Si/C?H bond activations, affording a series of π‐conjugated siloles in high yields and regioselectivities. The catalytic cycle was proposed to involve a rarely documented endocyclic β‐hydride elimination of five‐membered metallacycles, which after reductive elimination gave rise to a Si?RhI species that is capable of C?H activation.  相似文献   

2.
An efficient visible light induced rhodium(I)‐catalyzed regioselective borylation of aromatic C?H bonds is reported. The photocatalytic system is based on a single NHC?RhI complex capable of both harvesting visible light and enabling the bond breaking/forming at room temperature. The chelating nature of the NHC‐carboxylate ligand was critical to ensure the stability of the RhI complex and to provide excellent photocatalytic activities. Experimental mechanistic studies evidenced a photooxidative ortho C?H bond addition upon irradiation with blue LEDs, leading to a cyclometalated RhIII‐hydride intermediate.  相似文献   

3.
A palladium‐catalyzed enantioselective intramolecular σ‐bond cross‐exchange between C?I and C?C bonds is realized, providing chiral indanones bearing an alkyl iodide group and an all‐carbon quaternary stereocenter. Pd/TADDOL‐derived phosphoramidite is found to be an efficient catalytic system for both C?C bond cleavage and alkyl iodide reductive elimination. In addition to aryl iodides, aryl bromides can also be used for this transformation in the presence of KI. Density‐functional theory (DFT) calculation studies support the ring‐opening of cyclobutanones occuring through an oxidative addition/reductive elimination process involving PdIV species.  相似文献   

4.
Transition‐metal‐mediated metalation of an aromatic C?H bond that is adjacent to a tertiary phosphine group in arylphosphines via a four‐membered chelate ring was first discovered in 1968. Herein, we overcome a long‐standing problem with the ortho‐C?H activation of arylphosphines in a catalytic fashion. In particular, we developed a rhodium‐catalyzed ortho‐selective C?H borylation of various commercially available arylphosphines with B2pin2 through PIII‐chelation‐assisted C?H activation. This discovery is suggestive of a generic platform that could enable the late‐stage modification of readily accessible arylphosphines.  相似文献   

5.
Unusual cleavage of P?C and C?H bonds of the P2N2 ligand, in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P‐tridentate coordination mode. The structures of both the heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P?C/C?H bond cleavage, which involves C?H bond cleavage, hydride rotation, Ni?C/P?H bond formation, and P?C bond cleavage.  相似文献   

6.
A general and practical strategy for remote site‐selective functionalization of unactivated aliphatic C?H bonds in various amides by radical chemistry is introduced. C?H bond functionalization is achieved by using the readily installed N‐allylsulfonyl moiety as an N‐radical precursor. The in situ generated N‐radical engages in intramolecular 1,5‐hydrogen atom transfer to generate a translocated C radical which is subsequently trapped with various sulfone reagents to afford the corresponding C?H functionalized amides. The generality of the approach is documented by the successful remote C?N3, C?Cl, C?Br, C?SCF3, C?SPh, and C?C bond formation. Unactivated tertiary and secondary C?H bonds, as well as activated primary C?H bonds, can be readily functionalized by this method.  相似文献   

7.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

8.
Pyridine activation by inexpensive iron catalysts has great utility, but the steps through which iron species can break the strong (105–111 kcal mol−1) C−H bonds of pyridine substrates are unknown. In this work, we report the rapid room‐temperature cleavage of C−H bonds in pyridine, 4‐tert‐butylpyridine, and 2‐phenylpyridine by an iron(I) species, to give well‐characterized iron(II) products. In addition, 4‐dimethylaminopyridine (DMAP) undergoes room‐temperature C−N bond cleavage, which forms a dimethylamidoiron(II) complex and a pyridyl‐bridged tetrairon(II) square. These facile bond‐cleaving reactions are proposed to occur through intermediates having a two‐electron reduced pyridine that bridges two iron centers. Thus, the redox non‐innocence of the pyridine can play a key role in enabling high regioselectivity for difficult reactions.  相似文献   

9.
This report widens the repertoire of emerging PdI catalysis to carbon–heteroatom, that is, C?S bond formation. While Pd0‐catalyzed protocols may suffer from the formation of poisonous sulfide‐bound off‐cycle intermediates and lack of selectivity, the mechanistically diverse PdI catalysis concept circumvents these challenges and allows for C?S bond formation (S–aryl and S–alkyl) of a wide range of aryl halides. Site‐selective thiolations of C?Br sites in the presence of C?Cl and C?OTf were achieved in a general and a priori predictable fashion. Computational, spectroscopic, X‐ray, and reactivity data support dinuclear PdI catalysis to be operative. Contrary to air‐sensitive Pd0, the active PdI species was easily recovered in the open atmosphere and subjected to multiple rounds of recycling.  相似文献   

10.
The N‐heterocyclic plumbylene [Fe{(η5‐C5H4)NSiMe3}2Pb:] is in equilibrium with an unprecedented dimer in solution, whose formation involves the cleavage of a strong C?H bond and concomitant formation of a Pb?C and an N?H bond. According to a mechanistic DFT assessment, dimer formation does not involve direct PbII insertion into a cyclopentadienyl C?H bond, but is best described as an electrophilic substitution. The bulkier plumbylene [Fe{(η5‐C5H4)NSitBuMe2}2Pb:] shows no dimerization, but compensates its electrophilicity by the formation of an intramolecular Fe?Pb bond.  相似文献   

11.
While there is a growing interest in harnessing synergistic effects of more than one metal in catalysis, relatively little is known beyond bimetallic systems. This report describes the straightforward access to an air‐stable Pd trimer and presents unambiguous reactivity data of its privileged capability to differentiate C?I over C?Br bonds in C?C bond formations (arylation and alkylation) of polyhalogenated arenes, which typical Pd0 and PdI‐PdI catalysts fail to deliver. Experimental and computational reactivity data, including the first location of a transition state for bond activation by the trimer, are presented, supporting direct trimer reactivity to be feasible.  相似文献   

12.
A catalyst‐dependent chemoselective one‐carbon insertion of diazo compounds into the C?C or C?H bonds of 1,3‐dicarbonyl species is reported. In the presence of silver(I) triflate, diazo insertion into the C(=O)?C bond of the 1,3‐dicarbonyl substrate leads to a 1,4‐dicarbonyl product containing an all‐carbon α‐quaternary center. This reaction constitutes the first example of an insertion of diazo‐derived carbenoids into acyclic C?C bonds. When instead scandium(III) triflate was applied as the catalyst, the reaction pathway switched to formal C?H insertion, affording 2‐alkylated 1,3‐dicarbonyl products. Different reaction pathways are proposed to account for this powerful catalyst‐dependent chemoselectivity.  相似文献   

13.
Copper‐catalyzed oxidative couplings of N‐allylbenzamides for C?N and C?O bond formations have been developed through C?H bond functionalization. To demonstrate the utility of this approach, it was applied to the synthesis of β‐aminoimides and imides. To the best of our knowledge, these are the first examples in which different classes of N‐containing compounds have been directly prepared from the readily available N‐allylbenzamides using an inexpensive catalyst/oxidant/base (CuSO4/TBHP/Cs2CO3) system.  相似文献   

14.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

15.
A highly stereoselective three‐component C(sp2)?H bond addition across alkene and polarized π‐bonds is reported for which CoIII catalysis was shown to be much more effective than RhIII. The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp2)?H bonds undergo the three‐component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five‐membered lactones. Additionally, the first asymmetric reactions with CoIII‐catalyzed C?H functionalization are demonstrated with three‐component C?H bond addition cascades employing N‐tert‐butanesulfinyl imines. These examples represent the first transition metal catalyzed C?H bond additions to N‐tert‐butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines.  相似文献   

16.
Manganese‐catalyzed C?H bond activation chemistry is emerging as a powerful and complementary method for molecular functionalization. A highly reactive seven‐membered MnI intermediate is detected and characterized that is effective for H‐transfer or reductive elimination to deliver alkenylated or pyridinium products, respectively. The two pathways are determined at MnI by judicious choice of an electron‐deficient 2‐pyrone substrate containing a 2‐pyridyl directing group, which undergoes regioselective C?H bond activation, serving as a valuable system for probing the mechanistic features of Mn C?H bond activation chemistry.  相似文献   

17.
Rhodium complexes with an indium metalloligand were successfully synthesized by utilizing a pyridine‐tethered cyclopentadienyl ligand as a support for an In?Rh bond. The indium metalloligand dramatically changes the electronic and redox properties of the rhodium metal, thereby enabling catalysis of sp2C?H bond activation.  相似文献   

18.
Pairing iron bis(amide) Fe(HMDS)2 with Na(HMDS) to form new sodium ferrate base [(dioxane)0.5?NaFe(HMDS)3] ( 1 ) enables regioselective mono and di‐ferration (via direct Fe?H exchange) of a wide range of fluoroaromatic substrates under mild reaction conditions. Trapping of several ferrated intermediates has provided key insight into how synchronised Na/Fe cooperation operates in these transformations. Furthermore, using excess 1 at 80 °C switches on a remarkable cascade process inducing the collective twofold C?H/threefold C?F bond activations, where each C?H bond is transformed to a C?Fe bond whereas each C?F bond is transformed into a C?N bond.  相似文献   

19.
Asymmetric C?H bond functionalization reaction is one of the most efficient and straightforward methods for the synthesis of optically active molecules. Herein we disclose an asymmetric C?H/C?H cross‐coupling reaction of ferrocenes with azoles such as oxazoles and thiazoles. Palladium(II)/monoprotected amino acid (MPAA) catalytic system which exhibits excellent reactivity and regioselectivity for oxazoles and thiazoles. This method offers a powerful strategy for constructing planar chiral ferrocenes. Mechanistic studies suggest that the C?H bond cleavage of azoles is likely proceeding through a SEAr process and may not be a turnover limiting step.  相似文献   

20.
The rhodium(I)‐catalyzed C?C bond activation reaction of siloxyvinylcyclopropanes with diazoesters demonstrates a novel mode of C?C bond cleavage of siloxyvinvylcyclopanes. The alkene products were obtained as single E‐configured isomers in good yields. A σ,η3‐allyl rhodium complex, which has been previously proposed as the key intermediate in rhodium(I)‐catalyzed cycloaddition of vinylcyclopropanes, has been isolated and characterized by X‐ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号