首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Non‐heme (L)FeIII and (L)FeIII‐O‐FeIII(L) complexes (L=1,1‐di(pyridin‐2‐yl)‐N,N‐bis(pyridin‐2‐ylmethyl)ethan‐1‐amine) underwent reduction under irradiation to the FeII state with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge‐transfer excitation of a FeIII?μ‐O?FeIII complex to generate [(L)FeIV=O]2+ (observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeII to the FeIII state with O2, thus closing the cycle of methanol oxidation to methanal.  相似文献   

2.
From the viewpoints of large capacity, long‐term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal‐substituted ?‐Fe2O3, ?‐GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ?‐Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single‐ion anisotropy on CoII (S=3/2) along the c‐axis. The saturation magnetization was increased by 44 % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal‐to‐noise ratio compared to the currently used magnetic tape.  相似文献   

3.
The mechanism of oxidative epoxidation catalyzed by HppE, which is the ultimate step in the biosynthesis of fosfomycin, was studied by using hybrid DFT quantum chemistry methods. An active site model used in the computations was based on the available crystal structure for the HppE‐FeII‐(S)‐HPP complex and it comprised first‐shell ligands of iron as well as second‐shell polar groups interacting with the substrates. The reaction energy profiles were constructed for three a priori plausible mechanisms proposed in the literature, and it was found that the most likely scenario for the native substrate, that is, (S)‐HPP, involves generation of the reactive FeIII? O . /FeIV?O species, which is responsible for the C? H bond‐cleavage. At the subsequent reaction stage, the OH‐rebound, which would lead to a hydroxylated product, is prevented by a fast protonation of the OH ligand and, as a result, ring closure is the energetically preferred step. For the R enantiomer of the substrate ((R)‐HPP), which is oxidized to a keto product, comparable barrier heights were found for the C? H bond activation by both the FeIII? O2 . and FeIV?O species.  相似文献   

4.
A 1:1 inclusion complex (FeIIPImCD) of 5,10,15,20‐tetrakis‐ (4‐sulfonatophenyl)porphinatoiron(II) (FeIIP) and an O‐methylated β‐cyclodextrin dimer with an imidazole linker (ImCD) was found to bind dioxygen in aqueous solution. The half‐saturation pressure of dioxygen (P1/2O2) is 1.7 torr at 25 °C, which is 10 times lower than that for a previous myoglobin functional model (hemoCD) with a pyridine linker. Meanwhile, the half‐life of oxygenated FeIIPImCD is 3 h, which is 10 times shorter than that of oxygenated hemoCD. The covering of the iron(II) center by a microscopic environment is essential for preventing autoxidation of oxygenated ferrous porphyrin, which is promoted by nucleophilic attack of H2O and/or nucleophiles such as inorganic anions. Due to structural requirements, covering of the FeII center of FeIIPImCD is insufficient compared with the case of hemoCD. As a result, water molecules can penetrate more easily the cleft of the O2–FeIIPImCD complex and act as an autoxidation inducer. This structure also causes poorer selectivity against carbon monoxide (M=1040). In contrast, the dioxygen affinity of FeIIPImCD is much higher than that of hemoCD because the imidazole moiety is a stronger electron donor than pyridine.  相似文献   

5.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

6.
Gold nanoparticles (AuNPs) prepared by citrate reduction of aurochloric acid (HAuCl4) were functionalized by tris(4‐sulfonatophenyl)porphinatoiron(III) (FeIIIP2) and poly(ethylene glycol) with thiolated arms (PEG‐SH). FeIIIP2 on the AuNP surface existed as its μ‐oxo dimer, which was reduced by Na2S2O4 to yield monomeric FeIIP2. FeIIP2‐bearing AuNPs were further functionalized through inclusion of two sulfonatophenyl groups of FeIIP2 by a per‐O‐methylated β‐cyclodextrin dimer with a pyridine linker (Py3CD) to obtain AuNPs capable of carrying diatomic molecules in the body. The resulting AuNPs (hemoCD‐AuNPs) bound O2 as well as CO in an aqueous solution. Although a noncolloidal 1:1 complex of 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphinatoiron(II) and Py3CD injected into the femoral vein of a rat was rapidly excreted in the urine, no excretion was observed with ferric hemoCD‐AuNPs, which were gradually accumulated in the spleen and liver of a rat. These results suggest that hemoCD‐AuNPs can be used as a carrier of diatomic molecules such as O2 and CO in vivo.  相似文献   

7.
Ceric ammonium nitrate (CAN) or CeIV(NH4)2(NO3)6 is often used in artificial water oxidation and generally considered to be an outer‐sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII‐O‐CeIV(OH2)(NO3)4]+ ( 3 ), a complex obtained from the reaction of [(N4Py)FeII(NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV=O]2+ ( 2 ) with CeIII(NO3)3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S =1 FeIV in 2 to S =5/2 in 3 , which is found to be facile despite the formal spin‐forbidden nature of this process. This observation suggests that FeIV=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.  相似文献   

8.
The title compound, poly[[diaqua‐1κ2O‐tetrakis(μ3‐pyridine‐2,3‐dicarboxylato)‐2:1:2′κ10N,O2:O2′,O3:O3′;2:1:2′κ8O3:O3′:N,O2‐diiron(III)strontium(II)] dihydrate], {[Fe2Sr(C7H3O4)4(H2O)2]·2H2O}n, which has triclinic (P) symmetry, was prepared by the reaction of pyridine‐2,3‐dicarboxylic acid, SrCl2·6H2O and Fe(OAc)2(OH) (OAc is acetate) in the presence of imidazole in water at 363 K. In the crystal structure, the pyridine‐2,3‐dicarboxylate (pydc2−) ligand exhibits μ3‐η1111 and μ3‐η11111 coordination modes, bridging two FeIII cations and one SrII cation. The SrII cation, which is located on an inversion centre, is eight‐coordinated by six O atoms of four pydc2− ligands and two water molecules. The coordination geometry of the SrII cation can be best described as distorted dodecahedral. The FeIII cation is six‐coordinated by O and N atoms of four pydc2− ligands in a slightly distorted octahedral geometry. Each FeIII cation bridges two neighbouring FeIII cations to form a one‐dimensional [Fe2(pydc)4]n chain. The chains are connected by SrII cations to form a three‐dimensional framework. The topology type of this framework is tfj . The structure displays O—H...O and C—H...O hydrogen bonding.  相似文献   

9.
Employing a “one‐pot” synthesis strategy, the reaction of Na2WO4·2H2O, Na2HAsO4·7H2O, FeCl3·6H2O, various Ln3+ ions, and hexamethylenetetramine (HMTA) in aqueous solutions with pH values ranging from 5.5 to 6.5 results in the isolation of polytungstoarsenate‐based iron aggregates, ‐K8Na14[HMTA]4[(FeIII3FeII0.25(OH)3)(AsO4)(AsW9O34)]4·24H2O ( 1 ) (HMTA = hexamethylenetetraamine). The polyoxoanion of 1 contains a mixed‐valent {FeIII12FeII3‐OH)124‐AsO4)4} cluster surrounded by four [B‐α‐AsW9O34]9? units. It is the first polytungstatoarsenate‐based mixed‐valent {FeIII12FeII} aggregate and the largest iron cluster based on [AsW9O34]9? ligands. The compound was characterized by elemental analyses, IR, UV/Vis absorption, and diffuse‐reflectance UV/Vis spectroscopy, TG analyses, XRPD, XPS and gel‐filtration chromatography. The electrochemical and electrocatalytical properties were also investigated. Crystal data for 1 , orthorhombic, Fddd, a = 28.156(6) Å, b = 36.003(7) Å, c = 42.126(8) Å, α = 90°, β = 90°, γ = 90°, Z = 8.  相似文献   

10.
Investigation of the Hydrolytic Build‐up of Iron(III)‐Oxo‐Aggregates The synthesis and structures of five new iron/hpdta complexes [{FeIII4(μ‐O)(μ‐OH)(hpdta)2(H2O)4}2FeII(H2O)4]·21H2O ( 2 ), (pipH2)2[Fe2(hpdta)2]·8H2O ( 4 ), (NH4)4[Fe6(μ‐O)(μ‐OH)5(hpdta)3]·20.5H2O ( 5 ), (pipH2)1.5[Fe4(μ‐O)(μ‐OH)3(hpdta)2]·6H2O ( 7 ), [{Fe6(μ3‐O)2(μ‐OH)2(hpdta)2(H4hpdta)2}2]·py·50H2O ( 9 ) are described and the formation of these is discussed in the context of other previously published hpdta‐complexes (H5hpdta = 2‐Hydroxypropane‐1, 3‐diamine‐N, N, N′, N′‐tetraacetic acid). Terminal water ligands are important for the successive build‐up of higher nuclearity oxy/hydroxy bridged aggregates as well as for the activation of substrates such as DMA and CO2. The formation of the compounds under hydrolytic conditions formally results from condensation reactions. The magnetic behaviour can be quantified analogously up to the hexanuclear aggregate 5 . The iron(III) atoms in 1 ‐ 7 are antiferromagnetically coupled giving rise to S = 0 spin ground states. In the dodecanuclear iron(III) aggregate 9 we observe the encapsulation of inorganic ionic fragments by dimeric{M2hpdta}‐units as we recently reported for AlIII/hpdta‐system.  相似文献   

11.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

12.
Complexation of FeII and FeIII with azaheterocyclic ligands L (L = phen or bipy) were studied in the presence and in the absence of boron cluster anions [BnHn]2– (n = 10, 12). The reactions were carried out in air at room temperature in organic solvents and/or water. In all the solvents used, well known [FeL3]An (An = 2Cl or SO42–) ferrous complexes were formed from FeII salts. Composition of ferric complexes with L ligands depends on the nature of solvent: either dinuclear oxo‐iron(III) chlorides [L2ClFeIII–O–FeIIIL2Cl]Cl2 or ferric ferrates(III) [FeIIIL2Cl2][FeIIICl4], or [FeIIIL2Cl2][FeIIICl4L] were isolated from FeIII salts. Introduction of the closo‐borate anions to a Fe3+(or Fe2+)/L/solv. mixture stabilizes ferrous cationic complexes [FeL3]2+ in all the solvents used: only ferrous [FeL3][BnHn] (n = 10, 12) complexes were isolated from all the reaction mixtures in the presence of boron cluster anions.  相似文献   

13.
Two mixed‐valent disc‐like hepta‐nuclear compounds of [FeIIFeIII6(tea)6](ClO4)2 ( 1Fe , tea = N(CH2CH2O)33?) and [MnII3MnIII4(nmdea)6(N3)6]·CH3OH ( 2Mn , nmdea = CH3N(CH2CH2O)22?) have been synthesized by the reaction of Fe(ClO4)2·6H2O with triethanolamine (H3tea) for the former and reaction of Mn(ClO4)2·6H2O with diethanolamine (H2nmdea) and NaN3 for the later, respectively. 1Fe has the cationic cluster with a planar [FeIIFeIII6] core consisting of one central FeII and six rim FeIII atoms in hexagonal arrangement. The Fe ions are linked by the oxo‐bridges from the alcohol arms in the manner of edge‐sharing of their coordination octahedra. 2Mn is a neutral cluster with a [MnII3MnIII4] core possessing one central MnII atom surrounded by six rim Mn ions, two MnII and four MnIII. The structure is similar to 1Fe but involves six terminal azido ligands, each coordinate one rim Mn ion. 1Fe showed dominant antiferromagnetic interaction within the cluster and long‐range ordering at 2.7 K. The cluster probably has a ground state of low spin of S = 5/2 or 4/2. The long‐range ordering is weak ferromagnetic, showing small hysteresis with a remnant magnetization of 0.3 Nβ and a coercive field of 40 Oe. Moreover, the isofield of lines 1Fe are far from superposition, indicating the presence of significant zero–field splitting. Ferromagnetic interactions are dominant in 2Mn . An intermediate spin ground state 25/2 is observed at low field. In high field of 50 kOe, the energetically lowest state is given by the ms = 31/2 component of the S = 31/2 multiplet due to the Zeeman effect. Despite of the large ground state, no single‐molecule magnet behavior was found above 2 K.  相似文献   

14.
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two‐color valence‐to‐core X‐ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2‐activating, radical‐initiating manganese–iron heterodinuclear cofactor in a class I‐c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two‐color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIVFeIV and MnIVFeIII states of the enzyme to be assigned as MnIV(μ‐O)2FeIV and MnIV(μ‐O)(μ‐OH)FeIII, respectively.  相似文献   

15.
The title racemic heterometallic dinuclear compound, [MnSn(C2H2O2S)3(H2O)5], (I), contains one main group SnIV metal centre and one transition metal MnII centre, and, by design, links the MnII centre to the building unit of the (Δ/Λ) [SnL3]2− complex anion (L is the 2‐sulfidoacetate dianion). In this cluster, the SnIV centre of the (Δ/Λ) [SnL3]2− unit is coordinated by three O atoms and three S atoms from three L ligands to form an [SnO3S3] octahedral coordination environment. The MnII centre is in an [MnO6] octahedral coordination environment, with five O atoms from five water molecules and the sixth from the μ2L ligand of the (Δ/Λ) [SnL3]2− unit. Between adjacent dinuclear molecules, there are many hydrogen‐bond interactions of O—H...O, O—H...S, C—H...O and C—H...S types. Of these, eight pairs of O—H...O hydrogen bonds fuse all the dinuclear molecules into two‐dimensional supramolecular sheets along the bc plane. Adjacent supramolecular sheets are further connected through O—H...S hydrogen bonds to give a three‐dimensional supramolecular network.  相似文献   

16.
The reactivity of a mononuclear high‐spin iron(III)‐alkylperoxo intermediate [FeIII(t‐BuLUrea)(OOCm)(OH2)]2+( 2 ), generated from [FeII(t‐BuLUrea)(H2O)(OTf)](OTf) ( 1 ) [t‐BuLUrea=1,1′‐(((pyridin‐2‐ylmethyl)azanediyl)bis(ethane‐2,1‐diyl))bis(3‐(tert‐butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C?H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C?H bonds of aliphatic substrates with high chemo‐ and stereoselectivity in the presence of 2,6‐lutidine. While 2 itself is a sluggish oxidant, 2,6‐lutidine assists the heterolytic O?O bond cleavage of the metal‐bound alkylperoxo, giving rise to a reactive metal‐based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.  相似文献   

17.
The Schiff base ligand N1,N3‐bis(3‐methoxysalicylidene)diethylenetriamine (H2valdien) and the co‐ligand 6‐chloro‐2‐hydroxypyridine (Hchp) were used to construct two 3d–4f heterometallic single‐ion magnets [Co2Dy(valdien)2(OCH3)2(chp)2] ? ClO4 ? 5 H2O ( 1 ) and [Co2Tb(valdien)2(OCH3)2(chp)2] ? ClO4 ? 2 H2O ? CH3OH ( 2 ). The two trinuclear [CoIII2LnIII] complexes behave as a mononuclear LnIII magnetic system because of the presence of two diamagnetic cobalt(III) ions. Complex 1 has a molecular symmetry center, and it crystallizes in the C2/c space group, whereas complex 2 shows a lower molecular symmetry and crystallizes in the P21/c space group. Magnetic investigations indicated that both complexes are field‐induced single‐ion magnets, and the CoIII2–DyIII complex possesses a larger energy barrier [74.1(4.2) K] than the CoIII2–TbIII complex [32.3(2.6) K].  相似文献   

18.
Two examples of heterometallic–organic frameworks (HMOFs) composed of dicarboxyl‐functionalized FeIII‐salen complexes and d10 metals (Zn, Cd), [Zn2(Fe‐L)22‐O)(H2O)2] ? 4 DMF ? 4 H2O ( 1 ) and [Cd2(Fe‐L)22‐O)(H2O)2] ? 2 DMF ? H2O ( 2 ) (H4L=1,2‐cyclohexanediamino‐N,N′‐bis(3‐methyl‐5‐carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2 , each square‐pyramidal FeIII atom is embedded in the [N2O2] pocket of an L4? anion, and these units are further bridged by a μ2‐O anion to give an (Fe‐L)22‐O) dimer. The two carboxylate groups of each L4? anion bridge ZnII or CdII atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2‐chlorophenol (2‐CP) under visible‐light irradiation, which, to the best of our knowledge, is the first time that this has been observed for FeIII‐salen‐based HMOFs.  相似文献   

19.
Mechanism of substrate oxidations with hydrogen peroxide in the presence of a highly reactive, biomimetic, iron aminopyridine complex, [FeII(bpmen)(CH3CN)2][ClO4]2 ( 1 ; bpmen=N,N'‐dimethyl‐N,N'‐bis(2‐pyridylmethyl)ethane‐1,2‐diamine), is elucidated. Complex 1 has been shown to be an excellent catalyst for epoxidation and functional‐group‐directed aromatic hydroxylation using H2O2, although its mechanism of action remains largely unknown. 1 , 2 Efficient intermolecular hydroxylation of unfunctionalized benzene and substituted benzenes with H2O2 in the presence of 1 is found in the present work. Detailed mechanistic studies of the formation of iron(III)–phenolate products are reported. We have identified, generated in high yield, and experimentally characterized the key FeIII(OOH) intermediate (λmax=560 nm, rhombic EPR signal with g=2.21, 2.14, 1.96) formed by 1 and H2O2. Stopped‐flow kinetic studies showed that FeIII(OOH) does not directly hydroxylate the aromatic rings, but undergoes rate‐limiting self‐decomposition producing transient reactive oxidant. The formation of the reactive species is facilitated by acid‐assisted cleavage of the O? O bond in the iron–hydroperoxide intermediate. Acid‐assisted benzene hydroxylation with 1 and a mechanistic probe, 2‐Methyl‐1‐phenyl‐2‐propyl hydroperoxide (MPPH), correlates with O? O bond heterolysis. Independently generated FeIV?O species, which may originate from O? O bond homolysis in FeIII(OOH), proved to be inactive toward aromatic substrates. The reactive oxidant derived from 1 exchanges its oxygen atom with water and electrophilically attacks the aromatic ring (giving rise to an inverse H/D kinetic isotope effect of 0.8). These results have revealed a detailed experimental mechanistic picture of the oxidation reactions catalyzed by 1 , based on direct characterization of the intermediates and products, and kinetic analysis of the individual reaction steps. Our detailed understanding of the mechanism of this reaction revealed both similarities and differences between synthetic and enzymatic aromatic hydroxylation reactions.  相似文献   

20.
By reaction of MIICl2·x H2O (M = Fe (x = 4), Co, Ni (x = 6)) and LiOH·H2O in diethylene glycol (DEG) rod‐like crystals of the composition MII4Cl4(OCH2CH2OCH2CH2OH)4 are formed. According to X‐ray diffraction data obtained by both, single crystals and powders, the CoII and NiII compounds crystallize monoclinic with C2/c (CoII4Cl4(OCH2CH2OCH2CH2OH)4 ( 1 ): a = 2084.1(4), b = 919.0(2), c = 1754.0(4) pm, β = 124.3(1)°, Z = 4; NiII4Cl4(OCH2CH2OCH2CH2OH)4 ( 2 ): a = 2055.2(4), b = 932.1(2), c = 1727.4(4) pm, β = 125.2(1)°, Z = 4), whereas FeII4Cl4(OCH2CH2OCH2CH2OH)4 ( 3 ) crystallizes tetragonal with (a = 1251.4(2), c = 915.3(2) pm, Z = 2). All compounds exhibit analogous molecular structures which are built of a heterocubane‐type core consisting of four metal ions and four deprotonated oxygen atoms of four coordinated diethylene glycol molecules. Neutrality of charge is realized by additional coordination of four chloride anions. In addition to the structural characterization, the thermal and magnetical properties of the title compounds are investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号