首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Sequestering agents for uranyl chelation: new calixarene ligands   总被引:1,自引:0,他引:1  
Synthesis of sulfocatecholamide (CAMS) and hydroxypyridinone (HOPO) calixarene ligands and determination of their binding abilities for the uranyl cation were described. Chelating properties were determined by UV spectrophotometry in aqueous media under various pH conditions and further studied by 1H NMR analysis of the resonance signals of both aromatics' protons of the chelating groups. Each ligand shows a more or less pronounced affinity for uranium. HOPO calixarenes exhibit significant affinity towards uranyl ion at acidic and neutral pH while CAMS calixarene is more efficient at basic pH.  相似文献   

2.
Synthesis of modified EDTA and DTPA ligands and determination of their binding affinities for the uranyl cation are described.Thanks to a screening method, based on a chromophoric complex displacement procedure, chelating properties were studied in aqueous media under various pH conditions for evaluation of their in vivo uranyl-removal efficacy. Each ligand showed a more or less pronounced affinity for uranium. Specific ligands based on EDTA or DTPA analogues containing sulfocatecholamide (CAMS) were found to exhibit a significant affinity towards uranyl ion in acidic, neutral or basic conditions.  相似文献   

3.
Several linear, hexa- and tetradentate ligands incorporating a combination of 2,3-dihydroxy-terephthalamide (TAM) and hydroxypyridinone-amide (HOPO) moieties have been developed as uranyl chelating agents. Crystallographic analysis of several {UO(2)[TAM(HOPO)(2)]}(2-) complexes revealed a variable and crowded coordination geometry about the uranyl center. The TAM moiety dominates the bonding in hexadenate complexes, with linker rigidity dictating the equality of equatorial U-O bonding. Hexadentate TAM(HOPO)(2) ligands demonstrated slow binding kinetics with uranyl affinities on average 6 orders of magnitude greater than those of similarly linked bis-HOPO ligands. Study of tetradentate TAM(HOPO) ligands revealed that the high uranyl affinity stems primarily from the presence of the TAM moiety and only marginally from increased ligand denticity. Uranyl affinities of TAM(HOPO)(2) ligands were within experimental error, with TAM(o-phen-1,2-HOPO)(2) exhibiting the most consistent uranyl affinity at variable pH.  相似文献   

4.
Peptides are interesting tools to rationalize uranyl–protein interactions, which are relevant to uranium toxicity in vivo. Structured cyclic peptide scaffolds were chosen as promising candidates to coordinate uranyl thanks to four amino acid side chains pre‐oriented towards the dioxo cation equatorial plane. The binding of uranyl by a series of decapeptides has been investigated with complementary analytical and spectroscopic methods to determine the key parameters for the formation of stable uranyl–peptide complexes. The molar ellipticity of the uranyl complex at 195 nm is directly correlated to its stability, which demonstrates that the β‐sheet structure is optimal for high stability in the peptide series. Cyclodecapeptides with four glutamate residues exhibit the highest affinities for uranyl with log KC=8.0–8.4 and, therefore, appear as good starting points for the design of high‐affinity uranyl‐chelating peptides.  相似文献   

5.
The chromatographic behaviour of a commercially available ion-exchange stationary phase (the Dionex IonPac CS12A column) is described for a wide range of transition and heavy metal ions with nitric acid eluents containing chloride and nitrate potassium salts. The separation selectivity was found to arise from simultaneous ion-exchange interactions and chelation with the attached carboxylic and phosphonic acid groups. These interactions were investigated by altering the ionic strength and pH of the eluent and also the column temperature. Strong affinity of the stationary phase towards heavy metal ions, in particular bismuth and the uranyl ion was observed at low pH under chelating ion-exchange conditions, with high efficiency separations of other ions including cadmium and lead being possible with short analysis times (approximately 5-15 min). Examples are given of separations obtained using 4-(2-pyridylazo)resorcinol or Arsenazo III as the post-column chromogenic reagents, demonstrating the potential versatility and utility of this stationary phase for heavy metal ion analysis.  相似文献   

6.
The geometries, relative energies and spectroscopic properties of a range of α-isosaccharinate complexes of uranyl(VI) are studied computationally using ground state and time-dependent density functional theory. The effect of pH is accommodated by varying the number of water and hydroxide ligands accompanying isosaccharinate in the equatorial plane of the uranyl unit. For 1 : 1 complexes, the calculated uranyl ν(asym) stretching frequency decreases as pH increases, in agreement with previous experimental data. Three different isosaccharinate chelating modes are studied. Their relative energies are found to be pH dependent, although the energetic differences between them are not sufficient to exclude the possibility of multiple speciation. At higher pH, the uranyl-ligand interactions are dominated more by the equatorial OH(-) than by the organic ligands. Calculated electronic excitation energies support experiment in finding the lowest energy transitions to be ligand → metal charge transfer. (13)C NMR chemical shifts are calculated for the coordinated isosaccharinate in the high pH mimics, and show good agreement with experimental data, supporting the experimental conclusion that the five-membered chelate ring is favoured at high pH. The effect of increasing the isosaccharinate concentration is modelled by calculating 1 : 2 and 1 : 3 uranyl : α-isosaccharinate complexes. Comparison of the results of the present study with those from our closely related investigation of uranyl(VI)-D-gluconate complexes (Dalton Transactions 40 (2011) 11248) reveals strong similarities in structure, bonding, coordination geometry and electronic excitations, but also differences in ΔG for key ligand replacement reactions, suggesting that caution should be exercised when using gluconate as a thermodynamic model for isosaccharinate in uranyl(vi) chemistry.  相似文献   

7.
《Analytical letters》2012,45(18):2345-2359
Abstract

The chelating adsorbents, heterocyclic azo dyes supported on silica gel, were prepared and their adsorption behaviors of metal ions were investigated. The 1-(2-pyridylazo)-2-naphthol(PAN)-SG and 2-(2-thiazolylazo)-p-cresol(TAC)-SG show greater affinity for UO2(II) and ZrO(II), compared with the other metal ions like Cu, Cd, Fe and alkaline earths. Trace uranyl can be quantitatively retained on the column of the gels at neutral pH region and flow-rate 3–4 ml/min. The uranyl retained is easily eluted from the column bed with a mixture of acetone and nitric acid(9:1 v/v) and determined by spectrophotometry using Arsenazo-III. Matrix components in seawater do not interfere and the spiked recovery of uranyl in artificial seawater was found to be average 98.6 %, with the relative standard deviation of 1.08 %. Both gels were applied to the determination of uranium in seawater with satisfactory results.  相似文献   

8.
9.
Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was combined with batch experiments to study the sorption of uranium(VI) onto gibbsite (gamma-Al(OH)3). The experiments were performed under ambient conditions in 0.1 M NaClO4 solution in the pH range from 5.0 to 8.5 using a total uranium concentration of 1x10(-5) M, and a solid concentration of 0.5 g/40 ml. Two uranyl surface species with fluorescence lifetimes of 330+/-115 and 5600+/-1640 ns, respectively, were identified. The first species was dominating the more acid pH region whereas the second one became gradually more prominent towards higher pH values. The fluorescence spectra of both adsorbed uranyl(VI) surface species were described with six characteristic fluorescence emission bands situated at 479.5+/-1.1, 497.4+/-0.8, 518.7+/-1.0, 541.6+/-0.7, 563.9+/-1.2, and 585.8+/-2.1 nm. The surface species with the short-lived fluorescence lifetime of 330 ns is attributed to a bidentate mononuclear inner-sphere surface complex in which the uranyl(VI) is bound to two reactive OH- groups at the broken edge linked to one Al. The second surface species with the significant longer fluorescence lifetime of 5600 ns was attributed to small sorbed clusters of polynuclear uranyl(VI) surface species. The longer fluorescence lifetime of the long-lived uranyl surface species at pH 8.5 is explained with the growing average size of the adsorbed polynuclear uranyl surface species.  相似文献   

10.
To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis.  相似文献   

11.
The synthesis of new dipodal bis-sulfocatecholamide uranophiles is presented. Their binding abilities for uranyl cation were determined by UV spectrophotometry in aqueous media under various pH conditions and further studied by 1H NMR analysis of the resonance signal of both aromatic protons of the sulfocatecholamide groups. The results showed that the efficiency of these hydrosoluble chelating agents depends on the nature of the spacers. Each ligand shows a more or less pronounced affinity for uranium. The best receptor is the ligand CYCAMS 5d obtained as a mixture of cis/trans isomers, which achieves the best compromise between rigidity and steric hindrance.  相似文献   

12.
Seven water-soluble, tetradentate bis(3-hydroxy-N-methyl-pyridin-2-one) (bis-Me-3,2-HOPO) ligands were synthesized that vary only in linker geometry and rigidity. Solution-phase thermodynamic measurements were conducted between pH 1.6 and pH 9.0 to determine the effects of these variations on proton and uranyl cation affinity. Proton affinity decreases by introduction of the solubilizing triethylene glycol group as compared to unsubstituted reference ligands. Uranyl affinity was found to follow no discernable trends with incremental geometric modification. The butyl-linked 4 li-Me-3,2-HOPO ligand exhibited the highest uranyl affinity, consistent with prior in vivo decorporation results. Of the rigidly-linked ligands, the o-phenylene linker imparted the best uranyl affinity to the bis-Me-3,2-HOPO ligand platform.  相似文献   

13.
邓圣  张广山  梁爽  王鹏 《应用化学》2017,34(3):300-307
在微波辅助下,以聚丙烯腈纤维(PANF)为基体材料,二乙烯三胺(DETA)和硫化钠为改性试剂,通过两步接枝反应快速制备了含有大量硫原子的螯合纤维吸附剂。利用傅里叶变换红外光谱仪(FT-IR)和热重分析仪(TGA)对改性前后的纤维进行表征,同时考察了pH值、初始浓度、吸附时间和温度对螯合纤维吸附汞离子的影响。结果表明,微波辅助是一种高效、节能、经济和绿色的改性方法,改性过程在无毒的水环境中进行,试剂用量少,且改性时间大大缩短。改性纤维对汞离子的吸附是一个准二级动力学过程,较好的符合Langmuir吸附模型。在pH=7的条件下,螯合纤维对汞离子的最大吸附容量达到333.1mg/g,是一种有效的去除水中汞污染的吸附材料。  相似文献   

14.
用改进的计算机模型模拟研究了铀酰离子中毒血液体系在加入2,3-二羟基-5-甲氧羰基苄基胺羧酰胺螯合剂前后的各种配位平衡,讨论了铀酰离子的中毒浓度和螯合剂的剂量对螯合效率的关系,评估了这些螯合剂对铀酰离子的迁移能力和对体内必需金属离子的影响。  相似文献   

15.
A micelle-mediated extraction (CPE) procedure has been developed to remove trace amounts of uranium from wastewater using a non-ionic surfactant (Triton (X-100)) and lipophilic chelating extracting agent (D2EHPA) in acetate medium. The methodology used is based on the formation of metal complexes soluble in a micellar phase of a non-ionic surfactant. The uranyl ions complexes are then extracted into the surfactant-rich phase at a ambient temperature. The effects of different operating parameters such as the concentrations of Triton (X-100), D2EHPA and metal ions, temperature, sodium acetate rate and pH on the cloud point extraction of uranyl ions were studied in details and a set of optimum conditions were obtained. The results showed, without contribution of energy (ambient temperature), that up to 1000?ppm of uranyl ions can quantitatively be removed (>97?%) in a single CPE extraction using optimum conditions.  相似文献   

16.
The separation of iron(III), copper(II) and uranyl(II) ions from a series of salt solutions by chelating ion exchange on Duolite CS-346 resin by pH control is described. Recoveries of these ions from cobalt and nickel salt solutions were quantitative. Iron may also be separated from copper by selective sorption with pH control, and uranium from iron and copper by selective desorption with sodium carbonate solution as eluent.  相似文献   

17.
用改进的计算机模型模拟研究了铀酰离子中毒血液体系在加入2,3-二羟基-5-甲氧羰基苄基胺羧酰胺螯合剂前后的各种配位平衡,讨论了铀酰离子的中毒浓度和螯合剂的剂量对螯合效率的关系,评估了这些螯合剂对铀酰离子的迁移能力和对体内必需金属离子的影响.  相似文献   

18.
New tripodal gem-(bis-phosphonates) uranophiles were discovered by a screening method that allowed for the selection of ligands with strong uranyl-binding properties in a convenient microtiter-plate format. The method is based on competitive uranium binding by using Sulfochlorophenol S as chromogenic chelate. This dye compound was found to present high uranyl complexation properties and allowed to highlight ligands presenting association constants for UO(2+)(2) up to 10(18) at pH 7.4 and 10(20) at pH 9. A collection of 40 known ligands including polycarboxylate, hydroxamate, catecholate, hydroxypyridonate and hydroxyquinoline derivatives was tested. Also screened was a combinatorial library prepared from seven amine scaffolds and eight acrylates bearing diverse chelating moieties. Among these 96 tested candidates, a tripod derivative bearing gem-bis-phosphonates moieties was found to present the highest complexation properties over a wide range of pH and was further studied.  相似文献   

19.
Fujinaga T  Lee HL 《Talanta》1977,24(6):395-396
The chelating reagent acetylacetone has been examined as a polarographic medium; a method for its purification has been developed and it is found that the specific conductance is 4.2 x 10(-8) mho/cm, the accessible potential ranges are from -0.16 to -2.26 V vs. Ag/0.1M AgClO(4) for the pure solvent and from -0.35 to -2.20 V in the solvent after extraction. In pure solvent ferric acetylacetonate exhibits one wave and the uranyl complex gives two waves. After extraction from aqueous solution at pH 6.8-7.0, both metal acetylacetonates are reduced more reversibly and at more positive potential than in the pure solvent. Calibration curves are linear in the range 10(-5) -10(-3)M metal ion in the extract. The direct polarographic determination of uranium and iron in acetylacetone after extraction of the chelate from aqueous solution has been developed.  相似文献   

20.
The reaction of uranyl nitrate with asymmetric [3O, N] Schiff base ligands in the presence of base yields dinuclear uranyl complexes, [UO2(HL1)]2.DMF (1), [UO2(HL2)]2.2DMF.H2O (2), and [UO2(HL3)]2.2DMF (3) with 3-(2-hydroxybenzylideneamino)propane-1,2-diol (H3L1), 4-((2,3-dihydroxypropylimino)methyl)benzene-1,3-diol (H3L2), and 3-(3,5-di-tert-butyl-2-hydroxybenzylideneamino)propane-1,2-diol (H3L3), respectively. All complexes exhibit a symmetric U2O2 core featuring a distorted pentagonal bipyramidal geometry around each uranyl center. The hydroxyl groups on the ligands are attached to the uranyl ion in chelating, bridging, and coordinate covalent bonds. Distortion in the backbone is more pronounced in 1, where the phenyl groups are on the same side of the planar U2O2 core. The phenyl groups are present on the opposite side of U2O2 core in 2 and 3 due to electronic and steric effects. A similar hydrogen-bonding pattern is observed in the solid-state structures of 1 and 3 with terminal hydroxyl groups and DMF molecules, resulting in discrete molecules. Free aryl hydroxyl groups and water molecules in 2 give rise to a two-dimensional network with water molecules in the channels of an extended corrugated sheet structure. Compound 1 in the presence of excess Ag(NO3) yields {[(UO2)(NO3)(C6H4OCOO)](NH(CH2CH3)3)}2 (4), where the geometry around the uranyl center is hexagonal bipyrimidal. Two-phase extraction studies of uranium from aqueous media employing H3L3 indicate 99% reduction of uranyl ion at higher pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号