首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对含噪语音难以实现有效的语音转换,本文提出了一种采用联合字典优化的噪声鲁棒性语音转换算法。在联合字典的构成中,语音字典采用后向剔除算法(Backward Elimination algorithm,BE)进行优化,同时引入噪声字典,使得含噪语音与联合字典相匹配。实验结果表明,在保证转换效果的前提下,后向剔除算法能够减少字典帧数,降低计算量。在低信噪比和多种噪声环境下,本文算法与传统NMF算法和基于谱减法消噪的NMF转换算法相比具有更好的转换效果,噪声字典的引入提升了语音转换系统的噪声鲁棒性。  相似文献   

2.
基于混合映射模型的语音转换算法研究   总被引:3,自引:0,他引:3  
分析了语音转换研究中使用高斯混合模型映射算法时转换特征出现过平滑的问题,认为协方差矩阵估计不准确导致的转换特征细节信息的丢失是产生过平滑问题的主要原因,提出了使用码本映射和高斯混合模型共同转换声学特征细节的混合映射算法。此外提出了利用音素信息进行快速高斯混合模型训练的训练方法。客观评价表明使用音素信息的训练方法比常规方法性能指标平均提高了12.87%,而混合映射算法在使用音素信息的训练方法基础上比传统高斯混合模型转换算法性能指标提高了27.13%  相似文献   

3.
针对以往语音增强算法在非平稳噪声环境下性能急剧下降的问题,基于时频字典学习方法提出了一种新的单通道语音增强算法。首先,提出采用时频字典学习方法对噪声的频谱结构的先验信息进行建模,并将其融入到卷积非负矩阵分解的框架下;然后,在固定噪声时频字典情况下,推导了时变增益和语音时频字典的乘性迭代求解公式;最后,利用该迭代公式更新语音和噪声的时变增益系数以及语音的时频字典,通过语音时频字典和时变增益的卷积运算重构出语音的幅度谱并用二值时频掩蔽方法消除噪声干扰。实验结果表明,在多项语音质量评价指标上,本文算法都取得了更好的结果。在非平稳噪声和低信噪比环境下,相比于多带谱减法和非负稀疏编码去噪算法,本文算法更有效地消除了噪声,增强后的语音具有更好的质量。  相似文献   

4.
俞一彪  曾道建  姜莹 《声学学报》2012,37(3):346-352
提出一种基于完全独立的说话人语音模型进行语音转换的方法。首先每个说话人采用各自的语料训练结构化高斯混合模型(Structured Gaussian Mixture Model,SGMM),然后根据源和目标说话人各自的模型采用全局声学结构(AcousticalUniversal Structure,AUS)进行匹配和高斯分布对准,最终得到相应的转换函数进行语音转换。ABX和MOS实验表明可以得到与传统的平行语料联合训练方法接近的转换性能,并且转换语音的目标说话人识别正确率达到94.5%。实验结果充分说明了本文提出的方法不仅具有较好的转换性能,而且具有较小的训练量和很好的系统扩展性。  相似文献   

5.
简志华  王向文 《声学学报》2014,39(3):400-406
提出了一种基于压缩感知的考虑语音帧间信息的语音转换算法。根据连续多帧语音的线谱对参数所构成的矢量在离散余弦变换域具有稀疏性,利用压缩感知技术对该矢量压缩成短矢量,并将该压缩后的短矢量作为特征参数训练语音转换函数。实验测试结果表明,选择合适的语音帧数时,该算法的性能要比传统的采用加权频率卷绕的转换算法提高3.21%。这说明,充分有效地利用语音帧间的相关信息会使转换语音保持更稳定的帧间声学特性,有利于提高语音转换系统的性能,  相似文献   

6.
路成  田猛  周健  王华彬  陶亮 《声学学报》2017,42(3):377-384
为了刻画语音信号帧间相关性和使用更少的语音基表示语音特征,提出一种采用L1/2稀疏约束的卷积非负矩阵分解方法进行单通道语音增强。首先,进行噪声学习得到噪声基;然后,以噪声基为先验信息结合L1/2稀疏约束卷积非负矩阵分解方法学习含噪语音中的语音基成分;最后,利用学习到的语音基和系数重建出干净语音信号。在不同噪声环境下进行的实验结果表明,本文方法优于采用L1稀疏约束的卷积非负矩阵方法及传统的统计语音增强方法。   相似文献   

7.
为了从带噪信号中得到纯净的语音信号,提出了一种采用性别相关模型的单通道语音增强算法。具体而言,在训练阶段,分别训练了与性别相关的深度神经网络-非负矩阵分解模型用于估计非负矩阵分解中的权重参数;在测试阶段,提出了一种基于非负矩阵分解和组稀疏惩罚的算法用于判断测试语音中说话人的性别信息,然后再采用对应的模型估计权重,并结合已训练好的字典进行语音增强。实验结果表明所提算法在噪声抑制量及语音质量上,均优于一些基于非负矩阵分解的算法和基于深度神经网络的算法。  相似文献   

8.
为实现噪声情况下的人声分离,提出了一种采用稀疏非负矩阵分解与深度吸引子网络的单通道人声分离算法。首先,通过训练得到人声与噪声的字典矩阵,将其作为先验信息从带噪混合语音中分离出人声与噪声的系数矩阵;然后,根据人声系数矩阵中不同的声源成分在嵌入空间中的相似性不同,使用深度吸引子网络将其分离为各声源语音的系数矩阵;最后,使用分离得到的各语音系数矩阵与人声的字典矩阵重构干净的分离语音。在不同噪声情况下的实验结果表明,本文算法能够在抑制背景噪声的同时提高分离语音的整体质量,优于结合声噪人声分离模型的对比算法。   相似文献   

9.
周健  罗翔宇  王华彬  郑文明  陶亮 《声学学报》2024,49(6):1297-1303
针对现有基于生成对抗网络的语音情感转换仍然存在情感分离不明显, 且转换后的语音情感缺乏多样性问题, 提出了一种面向风格多样化的多对多语音情感转换方法。该方法基于一个双生成器结构的生成对抗网络模型, 通过对不同生成器的中间编码进行一致性损失约束确保语音内容和说话人特征具有一致性, 以提升转换后语音情感与目标情感的相似性。此外, 该方法通过情感映射网络和情感特征编码器为生成器提供同类情感的多样化情感表征。实验结果表明, 所提情感语音转换方法得到的语音情感更接近目标情感, 且情感样式更加丰富。  相似文献   

10.
提出在参数的提取过程中用不同的感知规整因子对不同人的参数归一化,从而实现在非特定人语音识别中对不同人的归一化处理。感知规整因子是基于声门上和声门下之间耦合作用产生声门下共鸣频率来估算的,与采用声道第三共振峰作为基准频率的方法比较,它能较多的滤除语义信息的影响,更好地体现说话人的个性特征。本文提取抗噪性能优于Mel倒谱参数的感知最小方差无失真参数作为识别特征,语音模型用经典的隐马尔可夫模型(HMM)。实验证明,本文方法与传统的语音识别参数和用声道第三共振峰进行谱规整的方法相比,在干净语音中单词错误识别率分别下降了4%和3%,在噪声环境下分别下降了9%和5%,有效地改善了非特定人语音识别系统的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号