首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Silicon nanocrystals have been synthesized in SiO2 matrix using Si ion implantation. Si ions were implanted into 300-nm-thick SiO2 films grown on crystalline Si at energies of 30–55 keV, and with doses of 5×1015, 3×1016, and 1×1017 cm−2. Implanted samples were subsequently annealed in an N2 ambient at 500–1100°C during various periods. Photoluminescence spectra for the sample implanted with 1×1017 cm−2 at 55 keV show that red luminescence (750 nm) related to Si-nanocrystals clearly increases with annealing temperature and time in intensity, and that weak orange luminescence (600 nm) is observed after annealing at low temperatures of 500°C and 800°C. The luminescence around 600 nm becomes very intense when a thin SiO2 sample is implanted at a substrate temperature of 400°C with an energy of 30 keV and a low dose of 5×1015 cm−2. It vanishes after annealing at 800°C for 30 min. We conclude that this luminescence observed around 600 nm is caused by some radiative defects formed in Si-implanted SiO2.  相似文献   

2.
a-Si/insulator multilayers have been deposited on (0 0 1) Si by electron gun Si evaporation and periodic electron cyclotron resonance plasma oxidation or nitridation. Exposure to an O or N plasma resulted in the formation of a thin SiO2 and SiNx layer whose thickness was self-limited and controlled by process parameters. For thin-layer (2 nm) Si/SiO2 and Si/SiNx multilayers no visible photoluminescence (PL) was observed in most samples, although all exhibited weak “blue” PL. For the nitride multilayers, annealing at 750°C or 850°C induced visible PL that varied in peak energy with Si layer thickness. Depth profiling of a-Si caps on thin insulating layers revealed no detectable contamination for the SiNx layers, but substantial O contamination for the SiO2 films.  相似文献   

3.
We have shown that, for thermally evaporated Ta2O5 or ZrO2 thin films on Si(1 0 0), O2 annealing at 300–500 °C causes the formation of an interfacial silicon oxide layer as thin as 1–2 nm which can be interpreted in terms of their high permeability to oxygen. And we have demonstrated how useful the energy loss spectra of photoexcited electrons from core levels such as O 1s are to measure the energy bandgaps of very thin insulators. With the combination of measured bandgaps and valence band lineups determined for X-ray photoelectron spectroscopy valence band spectra, we have determined the energy band alignments of Ta2O5 and ZrO2 with Si(1 0 0) before and after the O2 annealing at 500 °C. In addition, we have demonstrated that total photoelectron yield spectroscopy provides us direct information to quantify the energy distributions of both the defect states in the high-k dielectrics and the dielectric/Si(1 0 0) interface states over nearly entire Si bandgap.  相似文献   

4.
We report on the formation technique of single-crystalline β-FeSi2 balls (<100 nm) embedded in a Si p–n junction region by Si molecular beam epitaxy (MBE). β-FeSi2 films grown on Si (0 0 1) by reactive deposition epitaxy (RDE) aggregated into islands after annealing at 850°C in ultrahigh vacuum. The islands of β-FeSi2 aggregated further into a ball shape by following the Si MBE overgrowth at 750°C. It was found from X-ray diffraction (XRD) patterns that the epitaxial relationship between the two materials, and single-crystalline nature were preserved even after the annealing and the Si overgrowth. Capacitance–voltage (CV) characteristics and transmission electron microscope (TEM) images revealed that a lot of defects were introduced around the embedded β-FeSi2 balls with an increase of embedded β-FeSi2 quantity.  相似文献   

5.
[Fe(0.5 nm)/Pt(0.5 nm)]40, [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 multilayer were prepared by DC magnetron sputtering. By conventional furnace annealing (CA) at 270–600 °C for various time, all of the films still remained the disordered structure with the soft magnetic phase. By rapid thermal annealing (RTA) at 500 °C for various time, we obtained the [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 films with L12 ordered FePt3 phase which was almost ferromagnetic at room temperature. However, the [Fe(0.5 nm)/Pt(0.5 nm)]40 films was still disordered state even under RTA. Compared with CA, RTA exposed an outstanding effect on accelerating the phase transition when the film thickness is over [Fe(0.5 nm)/Pt(0.5 nm)]40.  相似文献   

6.
Ge ions were implanted at 100 keV with 3×1016 cm−2 into a 300  nm thick SiO2 layer on Si. Visible photoluminescence (PL) around 2.1 eV from an as-implanted sample is observed, and faded out by subsequent annealing at 900°C for 2 h. However, PL shows up again after annealing above 900°C at the same peak position. Compared with the as-implanted sample, significant increase of Ge–Ge bonds is measured in X-ray photoelectron spectroscopy, and the formation of Ge nanocrystals with a diameter of 5 nm are observed in transmission electron microscopy from the sample annealed at 1100°C. We conclude that the PL peak from the sample annealed above 900°C is caused by the quantum confinement effects from Ge nanocrystals, while the luminescence from the as-implanted sample is due to some radiative defects formed by Ge implantation.  相似文献   

7.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

8.
As a stable and ‘epitaxial’ passivation of a Si surface, we propose the bilayer-GaSe termination of a Si(1 1 1) surface. This surface is fabricated by depositing one monolayer of Ga on a clean Si(1 1 1) surface and subsequent annealing in a Se flux at around 520 °C, which results in unreconstructed 1×1 termination of the Si(1 1 1) surface by bilayer-GaSe. We found by scanning tunneling microscopy observation that slow cooling of the clean Si(1 1 1) surface from 850 to 520 °C with simultaneous deposition of a Ga flux results in better termination of the Si(1 1 1) surface. It was also found that this surface is stable against heating around 400 °C in O2 atmosphere of 3×10−3 Pa. By utilizing these properties of the bilayer-GaSe terminated surface, we have succeeded in fabricating ZnO quantum dots on this substrate.  相似文献   

9.
Nd2Fe14B Φ phase crystallites were formed in Nd16.7Fe65.5B17.8 thin films prepared by RF sputtering with subsequent heat treatment. The 2 μm-thick films were deposited onto 0.1 mm Mo sheets at an average substrate temperature (Ts) of 365°C. The enhanced magnetic properties of the magnetically anisotropic thin films were investigated using different heating rates (hr) of 10°C, 20°C, 50°C and 100°C/min in an annealing experiment. Transformation from the amorphous phase to the crystalline phase is clearly manifested by the formation of fine crystallites embedded as a columnar matrix of Nd2Fe14B phase. High-resolution scanning electron microscope data of the cross-section of the annealed films show columnar stacking of Nd2Fe14B crystallites with sizes <500 nm. Transmission electron microscope observations revealed that the microstructure of these films having out-of-plane magnetization consists of uniformly distributed Φ phase with grain size around 400 nm together with small Nd rich particles. This grain size of Φ phase is comparable to the single domain particle diameter of Nd2Fe14B. Significant change in iHc, 4πMr and 4πMs with hr was confirmed. Annealing conditions with a heating rate of 50°C/min to an annealing temperature (Ta) of 650°C for 30 min was consequently found to give optimum properties for the NdFeB thin films. The resulting magnetic properties, considered to be the effect of varying hr were iHc= 1307–1357 kA/m, 4πMr=0.78–1.06 T and 4πMs=0.81–1.07 T.  相似文献   

10.
Vanadium oxide films with temperature coefficient of resistant of −2.6% K−1 have been fabricated on Si3N4-film-coated Si substrates by ion beam sputtering in a controlled Ar/O2 atmosphere, at a relatively low growth temperature of 200 °C. The as-deposited films show no semiconductor-to-metal phase transitions even heated up to 150 °C. X-ray diffractometry shows that the main compound of the VOx film is a metastable phase of vanadium dioxide (VO2(B)) and the VO2(B) film can be transformed into VO2 film by post-growth annealing at 450 °C in flowing Ar atmosphere.  相似文献   

11.
We have studied the influence of the hydrostatic pressure during annealing on the intensity of the visible photoluminescence (PL) from thermally grown SiO2 films irradiated with Si+ ions. Post-implantation anneals have been carried out in an Ar ambient at temperatures Ta of 400°C and 450°C for 10 h and 1130°C for 5 h at hydrostatic pressures of 1 bar–15 kbar. It has been found that the intensity of the 360, 460 and 600 nm PL peaks increases with rising hydrostatic pressure during low-temperature annealing. The intensity of the short-wavelength PL under conditions of hydrostatic pressure continues to rise even at Ta=1130°C. Increasing Ta leads to a shift in the PL spectra towards the ultraviolet range. The results obtained have been interpreted in terms of enhanced, pressure-mediated formation of ≡Si–Si≡ centres and small Si clusters within metastable regions of the ion-implanted SiO2.  相似文献   

12.
Mo, Au and their coadsorbed layers were produced on nearly stoichiometric and oxygen-deficient titania surfaces by physical vapor deposition (PVD) and characterized by low energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and scanning tunnelling microscopy (STM). The behavior of Au/Mo bimetallic layers was studied at different relative metal coverages and sample temperatures.

STM data indicated clearly that the deposition of Au on the Mo-covered stoichiometric TiO2(1 1 0) surface results in an enhanced dispersion of gold at 300 K. The mean size of the Au nanoparticles formed at 300 K on the Mo-covered TiO2(1 1 0) was significantly less than on the Mo-free titania surface (2 ± 0.5 nm and 4 ± 1 nm, respectively). Interestingly, the deposition of Mo at 300 K onto the stoichiometric TiO2(1 1 0) surface covered by Au nanoparticles of 3–4 nm (0.5 ML) also resulted in an increased dispersity of gold. The driving force for the enhanced wetting at 300 K is that the Au–Mo bond energy is larger than the Au–Au bond energy in 3D gold particles formed on stoichiometric titania. In contrast, 2D gold nanoparticles produced on ion-sputtered titania were not disrupted in the presence of Mo at 300 K, indicating a considerable kinetic hindrance for breaking of the strong Au-TiOx bond.

The annealing of the coadsorbed layer formed on a strongly reduced surface to 740 K did not cause a decrease in the wetting of titania surface by gold. The preserved dispersion of Au at higher temperatures is attributed to the presence of the oxygen-deficient sites of titania, which were retained through the reaction of molybdenum with the substrate. Our results suggest that using a Mo-load to titania, Au nanoparticles can be produced with high dispersion and high thermal stability, which offers the fabrication of an effective Au catalyst.  相似文献   


13.
We investigated magnetoresistance (MR) and exchange bias properties by annealing in the dual spin valve (SV) with nano-oxide layer (NOL). By analyzing effects of NOL in top and bottom pinned simple SVs, MR enhancement effect of NOL inserted in the bottom pinned layer was higher than that of NOL in the top pinned layer with annealing. By the enhanced specular scattering of electrons by NOL, the MR ratio of dual SV with NOL was increased to 15.5–15.9% with an annealing of 200–250°C. Exchange coupling constant Jex was improved rapidly as 0.13–0.16 erg/cm2 by annealing in the bottom pinned layer, whereas the effect of annealing was not large in the top pinned layer with Jex of about 0.09–0.116 erg/cm2.  相似文献   

14.
In very rare circumstances, X-ray photoemission spectra of copper in spinel oxides exhibit a “negative binding energy shift”. The origin of such an anomalous XPS chemical shift was investigated. A metastable Ni0.48Co0.24Cu0.6+xMn1.68−xO4 (0 < x < 0.6) spinel was fabricated at 600 °C using a low-temperature solution technique. The binding energy of the 2p3/2 level of copper (930.8 eV) is found 1.9 eV lower than that of Cu0 (932.7 eV). XPS and EXAFS studies revealed that the post-thermal annealing between 600 and 800 °C undergoes an irreversible cubic-to-tetragonal phase transformation through oxidation–reduction reaction Cu1+ + Mn4+  Cu2+ + Mn3+, and only tetrahedral Cu1+ species in the cubic spinel shows this anomalous chemical shift. The negative shift of the core levels was correlated to an equal shift of the Cu 3d valence band levels. XPS valence bands from the samples annealed at different temperatures were compared to DOS calculations. The DOS computations were performed with FEFF-8.1 code using experimental crystal parameters established by the EXAFS analysis. It was found that the tetrahedral Cu1+ in the 600 °C annealed sample exhibits localization of the 3d orbitals showing behavior characteristic to zinc. The completely filled and isolated 3d electron shell appears as a false valence band edge in the XPS spectrum. The position of the Cu 3d, and other core levels, is established by oxygen pinning the Cu valence band levels and by the fixed value of the p–d gap characteristic to the tetrahedral copper environment in this spinel.  相似文献   

15.
Pure and rare earth doped gadolinium oxide (Gd2O3) waveguide films were prepared by a simple sol–gel process and dip-coating method. Gd2O3 was successfully synthesized by hydrolysis of gadolinium acetate. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structure of Gd2O3 films annealed at different temperature ranging from 400 to 750 °C were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Gd2O3 starts crystallizing at about 400 °C and the crystallite size increases with annealing temperature. Oriented growth of (4 0 0) face of Gd2O3 has been observed when the films were deposited on (1 0 0) Si substrate and annealed at 750 °C. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and propagation loss of the film measured by scattering-detection method is about 2 dB/cm. Luminescence properties of europium ions doped films were measured and are discussed.  相似文献   

16.
Ohmic contacts to p-type CuCrO2 using Ni/Au/CrB2/Ti/Au contact metallurgy are reported. The samples were annealed in the 200–700 °C range for 60 s in flowing oxygen ambient. A minimum specific contact resistance of 2 × 10−5 Ω cm2 was obtained after annealing at 400 °C. Further increase in the annealing temperature (>400 °C) resulted in the degradation of contact resistance. Auger Electron Spectroscopy (AES) depth profiling showed that out-diffusion of Ti to the surface of the contact stacks was evident by 400 °C, followed by Cr at higher temperature. The CrB2 diffusion barrier decreases the specific contact resistance by almost two orders of magnitude relative to Ni/Au alone.  相似文献   

17.
The annealing behaviors of photoluminescence of SiOx and Er-doped SiOx grown by molecular beam epitaxy in the wavelength range of visible and infrared light are studied. For SiOx, four PL bands located at 510, 600, 716 and 810 nm, respectively, are observed. For Er-doped SiOx, the 716 nm band, which is believed to be originated from the electron–hole recombination at the interface between crystalline Si and amorphous SiO2, disappears in the annealing temperature range of 500–900°C. It is suggested the enhancement of Er luminescence is partially due to the energy transfer from the recombination at the interface between crystalline Si and SiO2 to Er ions.  相似文献   

18.
It was observed that the nanocrystallites of BaFe12O19 formed at 140°C under a 0.25 T magnetic field exhibited a higher saturation magnetization (6.1 emu/g at room temperature) than that of the sample (1.1 emu/g) obtained under zero magnetic field. Both of the two approaches yielded plain-like particles with an average particle size of 12 nm. However, the Curie temperature (Tc), a direct measuring of the strength of superexchange interaction of Fe3+–O2−–Fe3+, increased from 410°C for the nanoparticles prepared without an external field applied to 452°C for the particles formed under a 0.25 T magnetic field, which indicates that external magnetic fields can improve the occupancy of magnetic ions and then increase the superexchange interaction. This was confirmed by electron paramagnetic resonance and Mössbauer spectrum analysis. The results present in this paper suggest that in addition to oxygen defects, surface non-magnetic layer and a fraction of finer particles in the superparamagnetic range, cation vacancies should be responsible for the decreasing of saturation magnetization in magnetic nanoparticles.  相似文献   

19.
The reaction between glass-like carbon (GC) and chlorine trifluoride (ClF3) gas was investigated with weight measurements, surface analysis, and gas desorption measurements, where the ClF3 gas is used for the in situ cleaning of tubes in silicon-related fabrication equipment. From Auger electron spectroscopy and X-ray photoelectron spectroscopy measurements, a carbon mono-fluoride, –(CF)n–, film near the surface of GC is considered to be grown onto the GC surface above 400 °C by the chemical reaction with ClF3, and this thickness of the fluoride film depends on the temperature. The grown fluoride film desorbs by annealing in a vacuum up to 600 °C. Although GC is apparently etched by ClF3 over 600 °C, the etch rate of GC is much lower than that of SiC and quartz.  相似文献   

20.
High-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED) were used to study gadolinium and lanthanum silicate films deposited on Si(1 0 0) substrates using electron-beam evaporation from pressed-powder targets. As-deposited films consist of an amorphous silicate layer without an interfacial layer. After annealing at 900 °C in oxygen for 2 min, an interfacial SiO2 layer is formed in the gadolinium silicate film, while this interfacial layer is a SiO2-rich lanthanum silicate layer in the lanthanum silicate film. The formation of interfacial silicate layers is thermodynamically more favorable for the lanthanum films than for the gadolinium films. The gadolinium silicate films crystallize at a temperature between 1000 and 1050 °C, while the crystallization temperature for the lanthanum silicate films is between 900 and 950 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号