首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
2.
A response surface methodology was applied to optimise the solid-phase microextraction (SPME) conditions using a polyacrylate-coated fiber to determine thirteen organochlorine pesticides from water. Analyses were performed using gas chromatography-electron-capture detection. Variables affecting absorption in both the headspace and immersion extraction were optimised by using a response surface generated with a Doehlert design, and the results were compared. The immersion SPME method was selected since higher recoveries were obtained for most of the compounds studied. The method developed was applied to the analysis of tap and Ebro river water samples. The linear range of most pesticides for real samples was found to be between 0.001 and 2.5 micrograms l-1 and the limits of detection were between 0.15 and 0.35 ng l-1. The repeatability and the reproducibility between days of the method (n = 6), expressed as relative standard deviation, for tap water spiked at a level of 1 ng l-1 were between 5.7 and 25.6% and between 7.6 and 26.5%, respectively.  相似文献   

3.
A simple and sensitive method for the determination of musty odorants, 2-methylisoborneol (MIB) and geosmin (GSM), in environmental water was developed by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry. MIB and GSM were separated within 10 min using a DB-1 capillary column and detected in the selective ion monitoring mode. HS-SPME using a polydimethylsiloxane/divinylbenzene fiber provided effective sample enrichment, and was carried out by fiber exposition at 70 degrees C for 30 min. Using this method, the calibration curves of MIB and GSM were linear in the range of 0-500 pg/mL, with a correlation coefficient above 0.9977 (n=24). The detection limits (S/N=3) of MIB and GSM were 0.9 and 0.6 pg/mL, respectively. This method was successfully applied to the analysis of environmental water samples without interference peaks.  相似文献   

4.
A solid-phase microextraction (SPME) method combined with gas chromatography with nitrogen-phosphorous and electron capture detection for the analysis of the pesticides terbumeton, metribuzine, isomethiozine, pyridafenthion and triadimenol in river water has been developed. For this purpose, polyacrylate and polydimethylsiloxane coated fibres have been utilised and the factors affecting throughput, precision and accuracy of the SPME method have been investigated and optimised. These factors include: matrix influence, adsorption time, pH, salt effect, desorption time, temperature and also the lapse of time between sampling and injection. The performed analytical procedure showed detectability ranging from 2.0 ng l(-1) to 3.0 microg l(-1) and precision from 1.9 to 27.7% (as relative standard deviation) depending on the pesticide, the fibre and the detector used. The results demonstrate the suitability of the SPME method to analyse these non-volatile pesticides in river water.  相似文献   

5.
A method for the determination of benzene in urine of occupationally or environmentally exposed persons was developed. The method was based on dynamic headspace, preconcentration on a solid sorbent, followed by thermal desorption and gas chromatographic determination. To achieve sufficient selectivity, we used multi-dimensional gas chromatography in combination with the inexpensive and robust flame ionisation detector. The limit of detection was 7 ng l-1 and the limit of quantification was 23 ng l-1. The linearity was good (correlation coefficient 0.999) in the range examined (20-4000 ng l-1) and the repeatability was 9%. The average recovery at low concentrations (20-400 ng l-1) was 86%. Analysis of a certified reference material of benzene in water, traceable to NIST, did not differ significantly from the certified value. Samples, frozen (-20 degrees C) in glass bottles sealed with Teflon-silicon septa, were stable for 1 year and refrigerated samples (4 degrees C) for at least 1 week. Loss of benzene during the collection and transfer of urine was investigated and found to be acceptable. The method is a cost effective and robust alternative to GC-MS and permits reliable quantification of occupational exposure and, in most cases, also of urine concentrations that can be expected from environmental exposure.  相似文献   

6.
S Nakamura  M Takino  S Daishima 《The Analyst》2001,126(6):835-839
A method for the trace level determination of 11 phenols as pentafluorobenzyl (PFB) derivatives by gas chromatography-mass spectrometry (GC-MS) with negative-ion chemical ionization (NICI) is described. First, the conditions for the PFB derivatisation of phenols were optimized and were found to be reaction temperature 80 degrees C and reaction time 5 h. Second, the detection limits using selected ion monitoring (SIM) were compared between trimethylsilylated (TMS) derivatives in the electron ionization (EI) mode and PFB derivatives in the NICI mode. The responses for the PFB derivatives in the NICI mode were 3.3-61 times higher than those of the TMS derivatives in the EI mode. The instrumental detection limits using NICI-SIM ranged from 2.6 to 290 fg. This method was applied to the analysis of phenols in river water using solid-phase extraction. The recoveries of the phenols from a river water sample spiked with standards at 100 ng l-1 with 2-chlorophenol, 4-chloro-3-methylphenol and pentachlorophenol and at 1000 ng l-1 with phenol, 2,4-dimethylphenol, 2,4-dichlorophenol, 2-nitrophenol, 2,4,6-trichlorophenol and 4-nitrophenol were 81.2-106.3% (RSD 5.1-8.0%), except for 2-methyl-4,6-dinitrophenol and 2,4-dinitrophenol, for which the recoveries were 5.8 and 4.2%, respectively, because water contained in the acetone eluate interfered with the derivatisation of these compounds with two electrophilic nitro groups.  相似文献   

7.
A method for the determination of trace amounts of the herbicide oxadiazon was developed using headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS) and selected ion monitoring. It was applied to determine oxadiazon in ground water, agricultural soil, must, wine and human urine samples. To determine oxadiazon in liquid samples, a response surface methodology generated with a Doehlert design was applied to optimize the HS-SPME conditions using a 100 microm polydimethylsiloxane fibre. For the analysis of soil samples, they were mixed with water and the SPME fibre suspended in the headspace above the slurry. Ground water, human urine and must show linear concentration range of application of 0.5-50 ng ml(-1)' with detection limits < or =0.02 ng ml(-1). HS-SPME-GC-MS analysis yielded good reproducibility (RSD values between 6.5 and 13.5%). The method validation was completed with spiked matrix samples. The developed analytical procedure is solvent free, cost effective and fast.  相似文献   

8.
To determine sub-ppb levels of drugs in biological samples, selective, sensitive and rapid analytical techniques are required. This work shows the possibilities for high-throughput analysis of solid-phase microextraction (SPME) directly coupled to an ion-trap mass spectrometer equipped with an atmospheric pressure chemical ionisation source. As no chromatographic separation is performed, the SPME procedure is the time-limiting step. Direct immersion SPME under non-equilibrium conditions permits the determination of lidocaine in urine within 10 min. After a 5 min sorption time with a 100 microm polydimethylsiloxane-coated fibre, the extraction yield of lidocaine from urine is about 7%. When applying 4 min desorption, using a mixture of ammonium acetate buffer (pH 4.5) and acetonitrile (85 + 15 v/v), about 10% of the analyte is retained on the fibre. An extra cleaning step of the fibre is therefore used to prevent carry-over. By use of tandem MS, no matrix interference is observed. The detection limit for lidocaine is about 0.4 ng ml(-1) and the intraday and interday reproducibility are within 14% over a concentration range of 2-45 ng ml(1).  相似文献   

9.
Solid-phase extraction (SPE) and solid-phase microextraction (SPME) were evaluated for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples using gas chromatography coupled to negative chemical ionisation mass spectrometry (GC-NCI-MS). For SPE optimisation, four commercially available SPE cartridges were tested and several SPE parameters, such as the elution solvent, elution volume and breakthrough volume were studied. The best results were obtained with Varian Bond Elut-C18. In order to achieve a high selectivity in the determination of SCCPs, GC-NCI-MS was used. Quality parameters of the optimised SPE and SPME procedures were determined, and the best results were obtained for the SPE/GC-NCI-MS method with LODs of 5 and 20 ng l(-1) for tap and river water, respectively. This method was successfully applied to the analysis of SCCPs in river water samples at concentrations below the microg l(-1) level.  相似文献   

10.
The off-flavor compounds 2-methylisoborneol (MIB), geosmin, 2,4,6-trichloroanisole, 2,3,6-trichloroanisole, 2,3,4-trichloroanisole, and 2,4,6-tribromoanisole were analyzed in water samples by stir bar sorptive extraction (SBSE) followed by on-line thermal desorption (TD) capillary GC/MS. Quantification was performed using the MS in the single-ion-monitoring mode (SIM) with 2,4,6-trichloroanisole-D(5 )as internal standard. Quantification limits are 0.1-0.2 ng L(-1) for the haloanisoles, 0.5 ng L(-1) for geosmin, and 1 ng L(-1) for MIB. The relative standard deviations at the quantification limit ranged from 7 to 14.6%. SBSE recovery was evaluated by spiking real water samples and varied from 87 to 117%. More than twenty samples per day can be analyzed by SBSE-TD-capillary GC-MS. The same technique in combination with olfactometry was used to elucidate unknown odorous compounds in water samples.  相似文献   

11.
Headspace solid-phase microextraction (SPME) was studied as a possible alternative to liquid-liquid extraction for the analysis of haloacetic acids (HAAs) in water. The method involves derivatization of the acids to their ethyl esters using sulphuric acid and ethanol after evaporation, followed by headspace SPME with a polydimethylsiloxane fibre and gas chromatography-ion trap mass spectrometry (GC-IT-MS). The derivatization procedure was optimized: maximum sensitivity was obtained with esterification for 10 min at 50 degrees C in 30 microl of sulphuric acid and 40 microl of ethanol. The headspace SPME conditions were also optimized and good sensitivity was obtained at a sampling temperature of 25 degrees C, an absorption time of 10 min, the addition of 0.1 g of anhydrous sodium sulfate and a desorption time of 2 min. Good precision (RSD lower than 10%) and detection limits in the ng l(-1) range (from 10 to 200 ng l(-1)) were obtained for all the compounds. The optimized procedure was applied to the analysis of HAAs in tap water and the results obtained by standard addition agreed with those of EPA method 552.2, whereas discrepancies due to matrix interferences were observed using external calibration. Consequently, headspace SPME-GC-IT-MS with standard addition is recommended for the analysis of these compounds in drinking water.  相似文献   

12.
Occupational exposure to 4,4'-methylenediphenyl diisocyanate (MDI) was measured during moulding of rigid polyurethane foam. The aim of the study was to find out whether an MDI-derived urinary amine metabolite could be detected in the urine of workers exposed to apparently low levels of MDI. Airborne MDI was sampled on 1-(2-methoxyphenyl)-piperazine (2MP)-impregnated glass fibre filters and determined by high-performance liquid chromatography (HPLC) using ultraviolet (UV) and electrochemical (EC) detection. The limit of detection of MDI was 3 ng ml-1 for a 20 microliters injection. The precision of sample preparation, expressed as relative standard deviation (RSD), was 1.3% with UV detection and 2.1% with EC detection at a concentration of 70 ng MDI ml-1 (n = 6). The 2MP-MDI derivative was stable at +4 degrees C up to eight weeks. The accuracy of the method was validated in an international quality control programme. Workers (n = 57) from three different factories participated in the study. Urinary 4,4'-methylenedianiline (MDA) metabolite was determined after acid hydrolysis as heptafluorobutyric anhydride derivatives by gas chromatography-mass spectrometry using chemical ionisation and monitoring negative ions. The limit of detection in urine was 0.2 nmol l-1. The precision of six analyses for a urine sample spiked to a concentration of 1 nmol l-1 was 29% (RSD). The MDI concentrations were below the limit of detection in most (64%) of the air samples collected in the worker's breathing zone. Still, detectable amounts of MDA were found in 97% of the urine samples. Monitoring of urinary MDA appears to be an appropriate method of assessing MDI exposure in work environments with low or undetectable MDI concentrations in the workplace air.  相似文献   

13.
This study develops a method for the analysis of seven fungicides in environmental waters, using solid-phase microextraction (SPME). The analyzed compounds--dicloran, chlorothalonil, vinclozolin, dichlofluanid, captan, folpet and captafol--belong to different classes of chemical compound (chloroanilines, sulphamides, phthalimides and oxazolidines) and are used mainly in agriculture and as antifouling paints. Their determination was carried out by gas chromatography with electron-capture and mass spectrometric detection. To perform SPME, four types of fibre have been assayed and compared: polyacrylate (85 microm), polydimethylsiloxane (100 and 30 microm), carbowax-divinylbenzene (CW-DVB 65 microm) and polydimethylsiloxane-divinylbenzene (65 microm). The main parameters affecting the SPME process such as pH, salt additives, methanol content, memory effect, stirring rate and adsorption-time profile were studied. The method was developed using spiked natural waters such as ground water, sea water, river water and lake water in a concentration range of 0.1-10 microg/l. Limits of detection of studied compounds were determined in the range of 1-60 ng/l, by using electron-capture and mass spectrometric detectors. The recoveries of all fungicides were in relatively high levels (70.0-124.4%) and the average R2 values of the calibration curves were above 0.990 for all the analytes. The SPME conditions were finally optimized in order to obtain the maximum sensitivity. The potential of the proposed method was realized by applying it to the trace-level screening determination of fungicides and antifouling compounds in sea water samples originating from various Greek marinas.  相似文献   

14.
Abstract

This study develops a method for solid phase microextraction (SPME) of ten widespread herbicides from water. The selected herbicides belong to different chemical groups are EPTC, molinate, propachlor, trifluralin, atrazine, propazine, terbuthylazine, prometryne, alachlor. Their determination was carried out by gas chromatography with flame thermionic and mass spectrometric detection. To perform the SPME, two types of fibre have been assayed: Carbowax-divinylbenzene (CW-DVB) of 65 μm thickness and polydimethylsiloxane-divinylbenzene (PDMS-DVB) of 65 μm thickness. The main factors affecting the SPME process such as pH, ionic strength, methanol content, memory effect, stirring rate and adsorption-time profile were studied. The method was applied to spiked natural waters such as ground water, sea water, lake water and river water in a concentration range of 0.1 to 10 μg/L. Limits of detection with each of the detectors were determined to be 1 – 20 ng/L in PDMS-DVB and 2–20 ng/L CW-DVB fibres. The recoveries of herbicides compared to distilled water were in relatively high levels 78.3–127.3 % and the average r2 values of the calibration curves were above 0.99 for all the analytes. The SPME conditions were finally optimized in order to obtain maximum sensitivity and samples were applied for the trace-level determination in river water samples originating from Ioannina region (Greece).  相似文献   

15.
A novel analytical method is reported that combines continuous solid-phase extraction and gas chromatography for the determination of 22 carboxylic acids in water. The highly polar and hydrophilic analytes were preferentially sorbed on a mixture of LiChrolut EN-Supelclean ENVI-18 (1:1) sorbent column and eluted with methanol; this extraction process did not require derivatisation. The extract was analysed by gas chromatography coupled to a flame ionisation detector as well as a mass spectrometer with electron impact (EI) or positive chemical ionisation modes. The highest sensitivity was achieved when using MS-EI, with good linearity in calibration curves and low detection limits (2-40ngL(-1)) for 50mL of sample. The entire procedure from raw aqueous sample to a ready-to-inject methanol solution of the acids requires less than 15min. Another benefit of this method is the good accuracy (recoveries between 93 and 102%) and precision (relative standard deviation, 3.4-6.2%), which allows the determination of carboxylic acids in environmental water and in real chlorinated and ozonated drinking water.  相似文献   

16.
A monolithic solid-phase microextraction (SPME) fibre was fabricated based on a molecularly imprinted polymer that could be coupled with gas chromatography for extraction, and determination of chlorpyrifos. The time of extraction, pH, temperature and ionic strength were investigated as important factors on the extraction procedure. The fabricated fibre was firm, inexpensive, stable and selective which gave it vital importance in SPME. The selectivity of the fabricated fibre in relation to analogue compounds was also investigated. Under the optimum conditions, the calibration curve was linear in the range of 1–20 mg L?1 (R2 = 0.9899). The high extraction efficiency was obtained for chlorpyrifos with a detection limit of 0.23 mg L?1. The fabricated fibre was successfully applied to SPME of chlorpyrifos from apple and grape fruits after its extraction and followed by gas chromatography-flame ionisation detector analysis.  相似文献   

17.
In this study we present a rapid and simultaneous assay method using headspace (HS) solid-phase microextraction (SPME)/gas chromatography (GC)/electron impact (EI) mass spectrometry (MS) (selected ion monitoring) for contaminants causing the principal organoleptic defects of wine (2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 1-octen-3-ol, geosmin, 2-methylisoborneol, 3-isopropyl-2-methoxypyrazine, fenchol, fenchone, 2-methoxy-3,5-dimethylpyrazine, 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol, 4-vinylguaiacol, 3-isobutyl-2-methoxypyrazine, guaiacol and ethyl acetate). The method was validated according to protocols NF ISO 5725-1, 2 and NF V03-110. Its characteristics (limit of detection (LOD), limit of quantification (LOQ), uncertainties) were determined after having optimised the SPME parameters. The target contaminants were quantified in the wines below their threshold of perception with a satisfactory relative standard deviation for all the analytes except ethyl acetate (RSD=36%); for that, the assay method permits clear differentiation of the wines that are at risk of presenting an acescent character, i.e. containing more than 120mgL(-1) ethyl acetate. The target volatile and odorous substances were determined at concentrations significantly below their threshold of perception in a hydroalcoholic context and their threshold of recovery in wines.  相似文献   

18.
A method for the analysis of six taste and odour causing compounds in aqueous samples using the granular adsorbent, Ambersorb 572, and gas chromatography-high resolution mass spectrometry (GC-HRMS) has been developed. This method for the determination of geosmin, 2-methylisoborneol (2-MIB), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2,3,6-trichloroanisole (236-TCA) and 2,4,6-trichloroanisole (246-TCA) is highly productive [up to 40 samples per day + 23 quality control (QC) samples] and provides rapid (24-48 h) turnaround times. The analytes are extracted from water by the addition of Ambersorb 572 to the sample bottle and rolling for 1 h. The adsorbent is isolated by filtration and allowed to air dry for 1 h. The Ambersorb 572 is transferred to an autosampler vial and the analytes are desorbed into dichloromethane. The extract is analysed by GC-HRMS at 7000 resolving power (RP). Quantification is performed by isotope dilution and internal standard techniques utilizing d3-geosmin, d3-2-MIB, d5-246-TCA and 2-sec-butyl-3-methoxypyrazine (s-BMP). Method precisions of 3.5-5.8% and accuracies of +/- 5.7-8.9% were obtained. Reporting detection limits (RDLs) of 1.0 ng L-1 were obtained for 2-MIB, geosmin, IPMP and IBMP, while RDLs of 2.0 ng L-1 were obtained for 236-TCA and 246-TCA.  相似文献   

19.
Rapid, hyphenated detection techniques involving a gas chromatograph (GC) coupled to a classical time-of-flight ion mobility (IMS) spectrometer, or more recently, to a micro-machined, miniature differential ion mobility spectrometer (DMS) are quite attractive for in-situ detection of many kinds of volatile organic compounds (VOCs) of concern and notably of natural contaminants appearing in the headspaces of selected foodstuff. This work aims at a rapid detection, identification and quantification of geosmin in the headspace of grape must and of wine. Samples of white and red wines have both been analyzed with a hyphenated GC/DMS and by Solid Phase Micro-Extraction (SPME) coupled to GC/MS taken as a reference. The detection of geosmin at concentrations below the human olfactory threshold of 50 ng/L has been demonstrated.  相似文献   

20.
Solid phase microextraction (SPME) coupled with gas chromatography (GC) was used to detect terpene hydrocarbons inside shipping containers entering New Zealand. The utility of this system for the rapid detection of undeclared wood packaging for quarantine purposes was demonstrated. A portable dynamic air-sampling device was built to house a SPME fibre and allow the air from shipping containers to be sampled. The effects of sample flow rate and sampling time were investigated and sampling conditions of 100 mL/min for 30 s were chosen to keep sampling within the linear range. A CV of less than 15% (n = 12) was obtained for all the compounds analysed under these conditions. To obtain an estimate for the limit of detection (LOD) for the terpene hydrocarbons of interest, small quantities of lime oil were placed in an empty shipping container and the air inside was analysed. LOD (S/N = 3) was estimated to be in the order of 50-100 ng/L of air using GC with flame ionisation detection (GC-FID). Finally, the device was tested in fully laden containers and was shown to be effective for trapping terpene hydrocarbons indicative of wood packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号