首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this paper, we propose an analysis that allows calculation of kinematic histories in unsteady problems of continuum mechanics, in relation to the use of memory-integral constitutive equations. Such cases particularly concern flow conditions of processing rheology, requiring evaluation of strain or deformation rate tensors, for viscoelastic incompressible fluids as polymers. In two- and three-dimensional cases, we apply concepts of the stream-tube method (STM) initially given for stationary conditions, where unknown local or global mapping functions are defined instead of classic velocity-pressure formulations, leading to consider the flow parameters in domains where the streamlines and trajectories are parallel straight lines. The approach enables us to provide accurate formulae for evaluating the kinematics histories that can be used later for computing the stresses for a given memory-integral model.  相似文献   

2.
Numerical simulation of three-dimensional flows generally involves solving large-scale problems. In this paper we consider the stream-tube method in three-dimensional duct flows. The analysis uses the concept of stream tubes in a mapped computational domain of the physical domain where the streamlines are parallel and straight. The incompressibility equation is automatically verified and the primary unknowns of the problem are, in addition to the pressure, the transformation functions between the two domains. It is also shown that the flow may be computed by considering successive subdomains (the stream tubes). This results in a reduction of computing time and storage area. Incompressible viscous and elastic liquids involving memory-integral equations may be considered in the flow simulations. This part of the paper examines three-dimensional flows of Newtonian fluids. The method is applied to the flow in a duct involving a threefold rotational symmetry, where the discretized relevant equations are solved by using the Levenberg-Marquardt algorithm.  相似文献   

3.
This study involves a theoretical formulation of the stream-tube method in non-stationary flows. Initially, this approach allowed flow computations by determining an unknown transformation between the physical domain and a mapped domain where the streamlines are rectilinear and parallel. To take into account vortex zones, we define local transformations of subregions of the physical domain that are mapped into rectangular domains where the transformed streamlines are still parallel and straight. The local functions must be determined numerically from the governing equations and boundary conditions put together with compatibility equations. The method enables to compute streamlines and flow data at every time, using distinguishing properties, as verification of mass conservation and definition of rectangular meshes allowing to adopt finite-difference schemes. The numerical simulations concern different non-Newtonian fluids under various geometrical and kinematic specifications related to flows between concentric and eccentric cylinders, leading to comparisons with literature data. The results also highlight the influence of the rheological properties on the flow characteristics in unsteady conditions.  相似文献   

4.
The finite element simulation of a selection of two- and three-dimensional flow problems is presented, based upon the use of four different constitutive models for polymer melts (Oldroyd-B, Rolie-Poly, Pom-Pom and XPP). The mathematical and computational models are first introduced, before their application to a range of visco-elastic flows is described. Results demonstrate that the finite element models used here are able to re-produce predictions made by other published numerical simulations and, significantly, by carefully conducted physical experiments using a commercial-grade polystyrene melt in a three-dimensional contraction geometry. The paper also presents a systematic comparison and evaluation of the differences between two- and three-dimensional simulations of two different flow regimes: flow of an Oldroyd-B fluid around a cylinder and flow of a Rolie-Poly fluid into the contraction geometry. This comparison allows new observations to be made concerning the relatively poor quality of two-dimensional simulations for flows in even quite deep channels.  相似文献   

5.
This paper describes the extension of a purely two-dimensional finite element method for the calculation of transonic turbomachinery blade-to-blade flows to include the quasi-three-dimensional terms. These terms account for the effect of variations in streamline radius, stream-tube height and blade rotation. By approximating the stream surface as a piecewise linear function, then using a local developed cone transformation on an element basis, the finite element equations are shown to remain of the same form as the two-dimensional equations. The numerical results presented demonstrate that the stream-tube height, streamline radius and blade rotation terms must be included if the prediction of the Mach number distribution around a gas turbine blade is to be calculated correctly.  相似文献   

6.
The boundary element method (BEM) is implemented for the simulation of three-dimensional transient flows of typical relevance to mixing. Creeping Newtonian and viscoelastic fluids of the Maxwell type are examined. A boundary-only formulation in the time domain is proposed for linear viscoelastic flows. Special emphasis is placed on cavity flows involving simple- and multiple-connected moving domains. The BEM becomes particularly suited in multiple-connected flows, where part of the boundary (stirrer or rotor) is moving, and the remaining outer part (cavity or barrel) is at rest. In this case, conventional methods, such as the finite element method (FEM), generally require remeshing or mesh refinement of the three-dimensional fluid volume as the flow evolves and the domain of computation changes with time. The BEM is shown to be much easier to implement since the kinematics of the elements bounding the fluid is known (imposed). It is found that, for simple cavity flow induced by a rotating vane at constant angular velocity, the tractions at the vane tip and cavity face exhibit non-linear periodic dynamical behavior with time for fluids obeying linear constitutive equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
An upwind MUSCL-type implicit scheme for the three-dimensional Navier-Stokes equations is presented and details on the implementation for three-dimensional flows of a ‘diagonal’ upwind implicit operator are developed. Turbulence models for separated flows are also described with an emphasis on the numerical specificities of the Johnson-King non-equilibrium model. Good predictions of separated two- and three-dimensional flows are demonstrated.  相似文献   

8.
In invariant tensor form, the laws of viscoplastic fluid flow are formulated for capillary and fractured media with a periodic microstructure that has orthotropic and transversely isotropic symmetry in the flow properties. An analysis of the laws of viscoplastic fluid flow in transversely isotropic and orthotropic porous and fractured media shows that in formulating the equations it is necessary to distinguish between the permeability tensor and the limiting gradient tensor, which may differ in the symmetry of the flow characteristics, and that the flow law is multivariant and admits one-, two-, and three-dimensional flows.  相似文献   

9.
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.  相似文献   

10.
The ability to predict continuum and transition-regime flows by hyperbolic moment methods offers the promise of several advantages over traditional techniques. These methods offer an extended range of physical validity as compared with the Navier–Stokes equations and can be used for the prediction of many non-equilibrium flows with a lower expense than particle-based methods. Also, the hyperbolic first-order nature of the resulting partial differential equations leads to mathematical and numerical advantages. Moment equations generated through an entropy-maximization principle are particularly attractive due to their apparent robustness; however, their application to practical situations involving viscous, heat-conducting gases has been hampered by several issues. Firstly, the lack of closed-form expressions for closing fluxes leads to numerical expense as many integrals of distribution functions must be computed numerically during the course of a flow computation. Secondly, it has been shown that there exist physically realizable moment states for which the entropy-maximizing problem on which the method is based cannot be solved. Following a review of the theory surrounding maximum-entropy moment closures, this paper shows that both of these problems can be addressed in practice, at least for a simplified one-dimensional gas, and that the resulting flow predictions can be surprisingly good. The numerical results described provide significant motivations for the extension of these ideas to the fully three-dimensional case.  相似文献   

11.
This paper presents a theoretical formulation in which the stream-tube method (STM) is examined through a variational approach for solving solid strain and fluid flow problems with finite elements. The analysis considers a reference domain, used as computational domain, related to the physical domain by an unknown transformation function to be determined numerically. Mass conservation is automatically verified by STM. The variational approach leads to eliminate the pressure in fluid problems and avoids to set up a mixed displacement–pressure procedure in the case of incompressible solids. Examples are given for fluid flows, applications and comparisons are also provided in the bending problem in elasticity.  相似文献   

12.
Zhi  Gao 《Acta Mechanica Sinica》1986,2(2):109-120
The Simplified Navier-Stokes equations (SNSE) and their exact solutions for the flow near a rotating disk and the flow in the vicinity of a stagnation point for both two- and three-dimensional flows are presented in this paper. The analysis shows that in the aforementioned cases the exact solutions of the inner-outer-layer-matched SNSE[4] are completely consistent with those of the complete Navier-Stokes equations (CNSE) and that the exact velocity solutions of D-SNSE[1,3] agree with those of CNSE, however, the exact pressure solutions of D-SNSE do not agree with those of CNSE. The maximum relative pressure errors between the exact solutions of D-SNSE and CNSE can be as high as a hundred per cent.  相似文献   

13.
The microfluidic system is a multi-physics interaction field that has attracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchannel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.  相似文献   

14.
New anisotropic algebraic constitutive relations for the Reynolds stress tensor are formulated. These relations make it possible to model correctly three-dimensional turbulent flows which cannot be described on the basis of traditional modern semi-empirical models of turbulence. Along with the well-known nonlinear Saffman term, these relations contain new nonlinear terms which take the wall effect into account. Several two- and three-dimensional turbulent flows are calculated nu\-merically using the averaged Navier-Stokes equations. The calculation results are compared with known experimental data.  相似文献   

15.
This paper presents a numerical method for fluid flow in complex three-dimensional geometries using a body-fitted co-ordinate system. A new second-order-accurate scheme for the cross-derivative terms is proposed to describe the non-orthogonal components, allowing parts of these terms to be treated implicitly without increasing the number of computational molecules. The physical tangential velocity components resulting from the velocity expansion in the unit tangent vector basis are used as dependent variables in the momentum equations. A coupled equation solver is used in place of the complicated pressure correction equation associated with grid non-orthogonality. The co-ordinate-invariant conservation equations and the physical geometric quantities of control cells are used directly to formulate the numerical scheme, without reference to the co-ordinate derivatives of transformation. Several two- and three-dimensional laminar flows are computed and compared with other numerical, experimental and analytical results to validate the solution method. Good agreement is obtained in all cases.  相似文献   

16.
DingYan(丁剡);ZhouXueyi(周雪漪);YuChangzhao(余常昭);LiangDong(梁栋)(ReceivedJune14,1994;CommunicatedbyBianYingui)THEEQUATIONSOFCOMPLETE...  相似文献   

17.
The stability problem of two-dimensional compressible flat-plate boundary layers is handled using the linear stability theory. The stability equations obtained from three-dimensional compressible Navier–Stokes equations are solved simultaneously with two-dimensional mean flow equations, using an efficient shoot-search technique for adiabatic wall condition. In the analysis, a wide range of Mach numbers extending well into the hypersonic range are considered for the mean flow, whereas both two- and three-dimensional disturbances are taken into account for the perturbation flow. All fluid properties, including the Prandtl number, are taken as temperature-dependent. The results of the analysis ascertain the presence of the second mode of instability (Mack mode), in addition to the first mode related to the Tollmien–Schlichting mode present in incompressible flows. The effect of reference temperature on stability characteristics is also studied. The results of the analysis reveal that the stability characteristics remain almost unchanged for the most unstable wave direction for Mach numbers above 4.0. The obtained results are compared with existing numerical and experimental data in the literature, yielding encouraging agreement both qualitatively and quantitatively.   相似文献   

18.
A new Boundary Integral Equation (BIE) formulation for Stokes flow is presented for three-dimensional and axisymmetrical problems using non-primitive variables, assuming velocity field is prescribed on the boundary. The formulation involves the vector potential, instead of the classical stream function, and all three components of the vorticity are implied. Furthermore, following the Helmholtz decomposition, a scalar potential is added to represent the solenoidal velocity field. Firstly, the BIEs for three-dimensional flows are formulated for the vector potential and the vorticity by employing the fundamental solutions in free space of vector Laplace and biharmonic equations. The equations for axisymmetric flows are then derived from the three-dimensional formulation in a second step. The outcome is a domain integral free BIE formulation for both three-dimensional and axisymmetric Stokes flows with prescribed velocity boundary condition. Numerical results are included to validate and show the efficiency of the proposed axisymmetric formulation.  相似文献   

19.
Three-dimensional laminar flows of a viscous conducting gas in the neighborhood of a rotating disk are considered. The simultaneous impact of an external magnetic field, suction from the disk surface, and the axial temperature gradient as well as the action of the external axial magnetic field on three-dimensional flows in the neighborhood of rigid permeable surfaces are first studied. An exact analytic solution of the system of the boundary layer equations is obtained. It is found that the direction of the radial flow initiated in the boundary layer can be varied by changing the temperature ratio in the external flow and on the disk for various Prandtl numbers Pr. An approximate solution of the problem of flow in the rotating cylinder in the presence of a retarding cover is constructed on the basis of the approach developed for extended disks.  相似文献   

20.
This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号