首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
A model is developed to investigate the two-dimensional interfacial misfit dislocation networks that follows the original Peierls-Nabarro idea. Structure and energies of heterophase interfaces are considered for the cubic lattice. To examine the energy contribution of misfit dislocations, where interactions between two dislocation arrays are concerned, a generalized stacking fault energy is proposed. Combined with first-principles calculations, we apply this model to a practical metal-ceramic example: the Ag/MgO(100) interface. An important correction to the adhesive energy is proposed in addition to its dislocation structure being confirmed.  相似文献   

4.
By using the special maskless V-grooved c-plane sapphire as the substrate, we previously developed a novel GaN LEO method, or the so-called canti-bridge epitaxy (CBE), and consequently wing-tilt-free GaN films were obtained with low dislocation densities, with which all the conventional difficulties can be overcome [J. Vacuum Sci. Technol. B 23 (2005) 2476]. Here the evolution manner of dlslocations in the CBE GaN films is investigated using transmission electron microscopy. The mechanisms of dislocation reduction are discussed. Dislocation behaviour is found to be similar to that in the conventional LEO GaN films except the enhanced dislocation-combination at the coalescence boundary that is a major dislocation-reduction mechanism for the bent horizontal-propagating dislocations in the CBE GaN films. The enhancement of this dislocation-combination probability is believed to result from the inclined shape and the undulate morphology of the sidewalls, which can be readily obtained in a wide range of applicable film-growth conditions during the GaN CBE process. Further development of the GaN CBE method and better crystal-quality of the GaN film both are expected.  相似文献   

5.
The freezing transition of a network model for tensionless membranes confined to two dimensions is investigated by Monte Carlo simulations and scaling arguments. In this model, a freezing transition is induced by reducing the tether length. Translational and bond-orientational order parameters and elastic constants are determined as a function of the tether length. A finite-size scaling analysis is used to show that the crystal melts via successive dislocation and disclination unbinding transitions, in qualitative agreement with the predictions of the Kosterlitz-Thouless-Halperin-Nelson-Young theory. The hexatic phase is found to be stable over only a very small interval of tether lengths. Received 4 June 1999 and Revised in final form 1 September 1999  相似文献   

6.
Predominant dislocation types in solar silicon are dissociated into 30°- and 90°-partials with reconstructed cores. Besides shallow 1D-band localized in their strain field and a quasi-2D band at the stacking fault connecting the two partials, the existence of several intrinsic core defects with deep lying levels has been demonstrated by electron spin resonance. The majority of core defects occur in nonequilibrium situations and, with the exception of a small EPR-signal assigned to a reconstruction defect, vanish after careful annealing above 800°C. There is good evidence now that part of deep levels observed in dislocated silicon is associated with impurities, especially with transition metal impurities. Electron-hole-pair recombination at a dislocation mainly runs via its shallow bands and is strongly increased by impurities bound to its core or in the strain field. The concentration of these impurities can be reduced by gettering processes to such a low level that radiative recombination at dislocations yields a luminescence efficiency of 0.1% at room temperature. A quite coherent picture has emerged for metal impurity precipitation in silicon. Early stages of precipitation in defect-free silicon are characterised by kinetically selected metastable defects forming as a result of large chemical driving forces for precipitation. Such defects are associated with deep level spectra which show the properties of extended multielectron defects. The evolution of the system to energetically more favourable configurations proceeds via ordinary particle coarsening but also via internal ripening, a process reminiscent of the above-mentioned metastable defects. Electronically, the defects evolve into metal-like inclusions which in general seem to act as strong recombination centers for minority carriers. In the presence of dislocations metastable defects quickly transform into equilibrium structures in the course of precipitation or do not form at all. In the presence of several metal impurities silicide precipitates which can be described as solid solutions of the respective metal atoms are observed, which is at least qualitatively in accord with ternary phase diagrams. Like single-metal silicide precipitates, strong minority carrier recombination is also typical for those multi-metal silicide particles.  相似文献   

7.
Despite decades of study, voids in silicon produced by implantation of H or He followed by annealing continue to be a topic of interest. There are two key applications: gettering of heavy metal impurities, and “ion cutting” used in silicon-on-insulator fabrication. Positron annihilation is one of the few techniques that can probe the vacancies and vacancy clusters that are the precursors to void formation. Data from recent studies will be discussed, including (I) isotopic substitution, in which comparisons of H vs. D implantation permit examination of the impact of primary point defects vs. chemical effects. Remarkable differences exist between H and D in blistering of silicon - ion doses 2-3 times higher are required for blistering with D than with H, despite a higher rate of primary defect production for D; (II) the effect of annealing temperature ramp-rate, in which we show that ramp-rate has a significant impact on residual defects, despite which it is so disregarded as to often be omitted from published reports; and (III) comparisons with electron microscopy which suggest that positron annihilation can be insensitive to large voids. In these studies, positron annihilation augments data from techniques including ion channelling, Raman scattering and electron microscopy; the suite of techniques allows elucidation of the interplay between implanted impurities and the vacancies and interstitials created by implantation.  相似文献   

8.
We report on the study of a magnetic dislocation in pure chromium. Coherent X-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded at a few micrometers from the surface of the sample. Beyond the specific case of magnetic dislocations in chromium, this work may open up a new method for the study of magnetic defects embedded in the bulk.  相似文献   

9.
We use dislocation theory and molecular dynamics (MD) simulations to investigate the effect of atom properties on the macroscopic strain rate sensitivity of f cc metals. A method to analyse such effect is proposed. The stress dependence of dislocation velocity is identified as the key of such study and is obtained via 2-D MD simulations on the motion of an individual dislocation in an fcc metal. Combining the simulation results with Orowan's relationship, it is concluded that strain rate sensitivities of fcc metals are mainly dependent on their atomic mass rather than the interatomic potential. The order of strain rate sensitivities of five fcc metals obtained by analysing is consistent with the experimental results available.  相似文献   

10.
该文应用超声相控阵全矩阵捕获的波数成像算法,检测带有通孔缺陷的钢轨和B型相控阵试块。以实验获取的全矩阵数据为基础,研究了自发自收模式和全矩阵模式的波数成像算法,理论上分析了全聚焦方法和波数算法的计算性能,取得波数成像的结果并与全聚焦方法的成像结果做了对比。实验结果表明:波数成像算法具有更快的计算速度和更高的横向分辨率,且能够更加精准地还原钢轨中缺陷大小和形状,而传统的全聚焦方法计算耗时长,聚焦点分布不均匀,重建较大的缺陷出现了纵向拉长的现象,不能够较好地反映钢轨中的大缺陷。波数成像算法在各向同性材料实时检测中有很大的应用潜能。  相似文献   

11.
(001)-oriented strontium bismuth tantalate thin films have been grown on Pt/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The room-temperature current–electric field dependence of the films has been investigated, which revealed a space-charge-limited conduction mechanism. The microstructures of grain boundaries and structural defects in these films were also examined by transmission electron microscopy and high-resolution transmission electron microscopy, respectively. The grains of the films deposited at 550 °C exhibited polyhedral morphologies, and the average grain size was about 50 nm in length and 35 nm in width. At a small misorientation angle (8.2°) tilt boundary, a regular array of edge dislocations with about 3-nm periodic distance was observed, and localized strain contrast near the dislocation cores was also observed. The Burgers vector b of the edge dislocation was determined to be [110]. At a high misorientation angle (39.0°) tilt grain boundary lattice strain contrast associated with the distortion of lattice planes was observed, and the mismatching lattice images occurred at about 2 nm along the boundary. The relationship between microstructural defects at grain boundaries and leakage currents of these films is also discussed. Received: 8 September 2000 / Accepted: 18 December 2000 / Published online: 28 February 2001  相似文献   

12.
Molecular dynamics simulations are performed to investigate the interaction between 60° shuffle dislocation and tetrainterstitial (I4) cluster in silicon, using Stillinger-Weber (SW) potential to calculate the interatomic forces. Based on Parrinello-Rahman method, shear stress is exerted on the model to move the dislocation. Simulation results show that the I4 cluster can bend the dislocation line and delay the dislocation movement. During the course of intersection the dislocation line sections relatively far away from the I4 cluster accelerate first, and then decelerate. The critical shear stress unpinning the 60° dislocation from the I4 cluster decreases as the temperature increases in the models.  相似文献   

13.
We propose a defect-mediated melting theory based on the statistics of two types of lattice defects, the point defects and dislocation pairs. The model predicts a first-order phase transition. Based on the model, phase transition temperature, latent heat and other thermodynamic functions are derived. Melting occurs due to discontinuous growth of point defects into dislocation pairs. The calculated phase transition temperature for five alkali metallic crystals are in fair agreement with measured melting temperatures, and the Richards' rule is derived by the model also.  相似文献   

14.
Relationships between minor hysteresis loops and dislocation density have been investigated at various temperatures from 10 to 600 K in polycrystalline nickel with tensile deformation. It was revealed that coefficients obtained from scaling relations between parameters of minor-loops are in linear proportion to stress at all measuring temperatures below its Curie temperature. Considering that dislocation density is generally in proportion to the square root of true stress, it is concluded that the coefficients are related with the square root of dislocation density. This method using minor hysteresis loops is useful for quantitative evaluation of dislocation density because of its very low measurement field.  相似文献   

15.
An analytical model for the determination of crystallite size and crystal lattice microstrain distributions in nanocrystalline (nc) materials by X-ray diffractometry (XRD) is presented. It entails generalizing the variance method to establish analytically the connection between the variance coefficients of the physically broadened XRD peaks and the characteristic parameters of explicit distributions of crystallite sizes and crystal lattice microstrains, which results in a more detailed characterization of the nc-materials. The proposed model is generic in nature and has the potential to be used under the assumption of different mathematical functions for the two distributions, which suggests that it may have an important role to play in the characterization of nc-materials. Nevertheless, the specialization to the case of nc-materials with log-normal crystallite size distribution and three typical types of lattice microstrains is used as an illustration and to formulate explicit analytical expressions of interest. Finally, the usefulness of the proposed model is demonstrated on standard XRD profiles.  相似文献   

16.
Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate.  相似文献   

17.
Magnetoelastic properties of materials are strongly influenced by changes of the dislocation structure that take place during the process of plastic deformation. Such changes can be used as a basis for a method of nondestructive evaluation (NDE) of the deformation level. So far, various methods, based on magnetic hysteresis loop properties as well as on the Barkhausen effect (BE), have been proposed. In the paper, the results obtained with the help of the abovementioned methods are compared with the results of the magnetoacoustic emission (MAE) signal measurements. The MAE signal is relatively easy to implement as a nondestructive method and unlike the BE effect signal gives information about the whole magnetized volume.  相似文献   

18.
The photorefractive effect in semiconducting materials with multiple defects is studied in the case of modulation depth m=1. The basic equations are Poisson’s equation and the continuity equations for electrons, holes and occupied defect levels. They include all recombination and optical generation mechanisms between the defect levels and valence and conduction bands. Their explicit numerical solution yields microscopic quantities such as space- and time-dependent electrical field profiles, carrier concentrations, as well as generation and recombination rates. The fundamental Fourier component of the electric field yields the two-wave-mixing gain. Application is made for InP with two levels in the forbidden gap, for which steady-state and transient resulting quantities are shown. The resulting features at large modulation depth are of non-sinusoidal shape. Due to the complexity of the system, the final results strongly depend on all parameters intervening in the models used, as is illustrated for several typical cases. Received: 14 August 2001 / Revised version: 16 October 2001 / Published online: 29 November 2001  相似文献   

19.
We have performed measurements on the gettering efficiencies for Ni in different silicon wafers. Gettering efficiencies were measured of wafers grown by different crystal-growth techniques, such as Czochralski-grown (CZ) and floating zone (FZ), as well as wafers containing crystal-originated particles (COPs) of different size and density. Lightly boron doped CZ wafers covered with an epitaxial layer were also evaluated. In another set of experiments, we compared different back-side-gettering techniques, like poly-silicon, stacking faults and He-implanted back sides and the dependence of back-side gettering on cooling rate and contamination level. Internal surfaces of oxygen precipitates were also investigated. The gettering test started with a reproducible spin-on contamination in the range around 1012 atoms/cm2 and was followed by a thermal treatment to redistribute the Ni impurity in the wafer. Subsequently, wafers were analyzed for their surface and bulk contamination by a novel layer-by-layer etching, stratigraphical technique in combination with inductively coupled plasma mass spectrometry. No detectable gettering effect of COPs was found. FZ wafers differed remarkably in their gettering behavior from CZ wafers, obviously due to differences in aggregated self-point defects. Most remarkably, the deposition process of an epitaxial layer changed the gettering behavior of p/p- wafers. Comparing the gettering efficiencies of different back sides, an extraordinarily high gettering efficiency of He-implanted voids can be anticipated, which was higher than the gettering efficiency of poly-silicon and stacking faults. High cooling rates at the end of the drive-in cycle and low contamination levels lowered the gettering efficiencies of back-side-gettering techniques, suggesting a diffusion-limited gettering process. Based on the dependence of the gettering efficiencies on different drive-in cycles, a surface reaction as a mechanistic initiation of the drive-in must be assumed. Oxygen precipitates exhibited a high gettering effect for Ni contamination. All experimental results are interpreted by available active surfaces in the gettering phases. Received: 30 May 2001 / Accepted: 16 June 2001 / Published online: 30 August 2001  相似文献   

20.
The interaction energy between point defects and dislocation patterns (such as the pile-up of dislocation loops and the dislocation wall) is derived. The bias for interstitial absorption by a dislocation in a pattern is shown to be lower than that of an isolated dislocation. The dislocation patterning is proposed to be driven by the dependence of dislocation bias on the dislocation arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号