首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Methods to discretize the Hamiltonian of a topological insulator or topological superconductor, without giving up on the topological protection of the massless excitations (respectively, Dirac fermions or Majorana fermions) are reviewed. The method of tangent fermions, pioneered by Richard Stacey, is singled out as being uniquely suited for this purpose. Tangent fermions propagate on a 2 + 1 ${2\bm {+}1}$ dimensional space-time lattice with a tangent dispersion: tan 2 ( ε / 2 ) = tan 2 ( k x / 2 ) + tan 2 ( k y / 2 ) ${\text{tan}^2 (\bm {\varepsilon }/2) \bm {=} \text{tan}^2 (k_x/2) \bm {+}\text{tan}^2 (k_y/2)}$ in dimensionless units. They avoid the fermion doubling lattice artefact that will spoil the topological protection, while preserving the fundamental symmetries of the Dirac Hamiltonian. Although the discretized Hamiltonian is nonlocal, as required by the fermion-doubling no-go theorem, it is possible to transform the wave equation into a generalized eigenproblem that is local in space and time. Applications that are discussed include Klein tunneling of Dirac fermions through a potential barrier, the absence of localization by disorder, the anomalous quantum Hall effect in a magnetic field, and the thermal metal of Majorana fermions.  相似文献   

4.
We present computer simulation and theoretical results for a system of N Quantum Hard Spheres (QHS) particles of diameter σ and mass m at temperature T, confined between parallel hard walls separated by a distance Hσ, within the range 1H. Semiclassical Monte Carlo computer simulations were performed adapted to a confined space, considering effects in terms of the density of particles ρ*=N/V, where V is the accessible volume, the inverse length H1 and the de Broglie’s thermal wavelength λB=h/2πmkT, where k and h are the Boltzmann’s and Planck’s constants, respectively. For the case of extreme and maximum confinement, 0.5<H1<1 and H1=1, respectively, analytical results can be given based on an extension for quantum systems of the Helmholtz free energies for the corresponding classical systems.  相似文献   

5.
Weak measurements have been under intensive investigation in both experiment and theory. Numerous experiments have indicated that the amplified meter shift is produced by the post-selection, yielding an improved precision compared to conventional methods. However, this amplification effect comes at the cost of a reduced rate of acquiring data, which leads to an increasing uncertainty to determine the level of meter shift. From this point of view, a number of theoretical works have suggested that weak measurements cannot improve the precision, or even damage the metrology information due to the post-selection. In this review, we give a comprehensive analysis of the weak measurements to justify their positive effect on prompting measurement precision. As a further step, we introduce two modified weak measurement protocols to boost the precision beyond the standard quantum limit. Compared to previous works beating the standard quantum limit, these protocols are free of using entangled or squeezed states. The achieved precision outperforms that of the conventional method by two orders of magnitude and attains a practical Heisenberg scaling up to n=106 photons.  相似文献   

6.
An electron in a constant magnetic field has energy levels, known as the Landau levels. One can obtain the corresponding radial wavefunction of free-electron Landau states in cylindrical polar coordinates. However, this system has not been explored so far in terms of an information-theoretical viewpoint. Here, we focus on Fisher information associated with these Landau states specified by the two quantum numbers. Fisher information provides a useful measure of the electronic structure in quantum systems, such as hydrogen-like atoms and under some potentials. By numerically evaluating the generalized Laguerre polynomials in the radial densities, we report that Fisher information increases linearly with the principal quantum number that specifies energy levels, but decreases monotonically with the azimuthal quantum number m. We also present relative Fisher information of the Landau states against the reference density with m=0, which is proportional to the principal quantum number. We compare it with the case when the lowest Landau level state is set as the reference.  相似文献   

7.
The phase boundaries of periodically driven spin–orbit coupled BECs with effective two‐body interactions are analytically calculated by using variational method. The phase diagrams of periodically driven 87 Rb and 23 Na systems present distinguished features from undriven systems, respectively. For the 87 Rb BECs, the critical density n c (density at quantum tricritical point) will be dramatically reduced in some parameter regions, and the prospect of observing this intriguing quantum tricritical point is greatly enlarged. Moreover, a series of quantum tricritical points emerge quasi‐periodically when increasing the Raman coupling strength with fixed 87 Rb density. In the 23 Na BECs, two hyperfine states of 23 Na atoms can be miscible within the suitable regions of driving parameter space. As a result, 23 Na systems will stay in the stripe phase with small Raman frequency at typical density, which expands the region of stripe phase in the phase diagram. In addition, an absence of quantum tricritical point in such 23 Na system is observed, which is very unlike 87 Rb  systems.  相似文献   

8.
Fisher information, Rényi entropy power and Fisher–Rényi information product are presented for the Dicke model. There is a quantum phase transition in this quantum optical model. It is pointed out that there is an abrupt change in the Fisher information, Rényi entropy power, the Fisher, Shannon and Rényi lengths at the transition point. It is found that these quantities diverge as the characteristic length: |λc−λ|−1/4|λcλ|1/4 around the critical value of the coupling strength λcλc for any value of the parameter ββ.  相似文献   

9.
We present example quantum chemistry programs written with JaqalPaq, a python meta-programming language used to code in Jaqal (Just Another Quantum Assembly Language). These JaqalPaq algorithms are intended to be run on the Quantum Scientific Computing Open User Testbed (QSCOUT) platform at Sandia National Laboratories. Our exemplars use the variational quantum eigensolver (VQE) quantum algorithm to compute the ground state energies of the H2, HeH+, and LiH molecules. Since the exemplars focus on how to program in JaqalPaq, the calculations of the second-quantized Hamiltonians are performed with the PySCF python package, and the mappings of the fermions to qubits are obtained from the OpenFermion python package. Using the emulator functionality of JaqalPaq, we emulate how these exemplars would be executed on an error-free QSCOUT platform and compare the emulated computation of the bond-dissociation curves for these molecules with their exact forms within the relevant basis.  相似文献   

10.
In this work, we define cumulative residual q-Fisher (CRQF) information measures for the survival function (SF) of the underlying random variables as well as for the model parameter. We also propose q-hazard rate (QHR) function via q-logarithmic function as a new extension of hazard rate function. We show that CRQF information measure can be expressed in terms of the QHR function. We define further generalized cumulative residual χ2 divergence measures between two SFs. We then examine the cumulative residual q-Fisher information for two well-known mixture models, and the corresponding results reveal some interesting connections between the cumulative residual q-Fisher information and the generalized cumulative residual χ2 divergence measures. Further, we define Jensen-cumulative residual χ2 (JCR-χ2) measure and a parametric version of the Jensen-cumulative residual Fisher information measure and then discuss their properties and inter-connections. Finally, for illustrative purposes, we examine a real example of image processing and provide some numerical results in terms of the CRQF information measure.  相似文献   

11.
One of the biggest challenges in characterizing 2-D image topographies is finding a low-dimensional parameter set that can succinctly describe, not so much image patterns themselves, but the nature of these patterns. The 2-D cluster variation method (CVM), introduced by Kikuchi in 1951, can characterize very local image pattern distributions using configuration variables, identifying nearest-neighbor, next-nearest-neighbor, and triplet configurations. Using the 2-D CVM, we can characterize 2-D topographies using just two parameters; the activation enthalpy (ε0) and the interaction enthalpy (ε1). Two different initial topographies (“scale-free-like” and “extreme rich club-like”) were each computationally brought to a CVM free energy minimum, for the case where the activation enthalpy was zero and different values were used for the interaction enthalpy. The results are: (1) the computational configuration variable results differ significantly from the analytically-predicted values well before ε1 approaches the known divergence as ε10.881, (2) the range of potentially useful parameter values, favoring clustering of like-with-like units, is limited to the region where ε0<3 and ε1<0.25, and (3) the topographies in the systems that are brought to a free energy minimum show interesting visual features, such as extended “spider legs” connecting previously unconnected “islands,” and as well as evolution of “peninsulas” in what were previously solid masses.  相似文献   

12.
This paper studies the effect of quantum computers on Bitcoin mining. The shift in computational paradigm towards quantum computation allows the entire search space of the golden nonce to be queried at once by exploiting quantum superpositions and entanglement. Using Grover’s algorithm, a solution can be extracted in time O(2256/t), where t is the target value for the nonce. This is better using a square root over the classical search algorithm that requires O(2256/t) tries. If sufficiently large quantum computers are available for the public, mining activity in the classical sense becomes obsolete, as quantum computers always win. Without considering quantum noise, the size of the quantum computer needs to be 104 qubits.  相似文献   

13.
In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statistical distribution ρ(x) of finding a particle at point x to the Born probability law |Ψ(x)|2. Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H theorem for the relaxation to the quantum equilibrium regime.  相似文献   

14.
Using the method of point canonical transformation, we derive some exactly solvable rationally extended quantum Hamiltonians which are non-Hermitian in nature and whose bound state wave functions are associated with Laguerre- or Jacobi-type X1X1 exceptional orthogonal polynomials. These Hamiltonians are shown, with the help of imaginary shift of coordinate: e−αpxeαp=x+iαeαpxeαp=x+iα, to be both quasi- and pseudo-Hermitian. It turns out that the corresponding energy spectra is entirely real.  相似文献   

15.
The effects of using a partly curved porous layer on the thermal management and entropy generation features are studied in a ventilated cavity filled with hybrid nanofluid under the effects of inclined magnetic field by using finite volume method. This study is performed for the range of pertinent parameters of Reynolds number (100Re1000), magnetic field strength (0Ha80), permeability of porous region (104Da5×102), porous layer height (0.15Htp0.45H), porous layer position (0.25Hyp0.45H), and curvature size (0b0.3H). The magnetic field reduces the vortex size, while the average Nusselt number of hot walls increases for Ha number above 20 and highest enhancement is 47% for left vertical wall. The variation in the average Nu with permeability of the layer is about 12.5% and 21% for left and right vertical walls, respectively, while these amounts are 12.5% and 32.5% when the location of the porous layer changes. The entropy generation increases with Hartmann number above 20, while there is 22% increase in the entropy generation for the case at the highest magnetic field. The porous layer height reduced the entropy generation for domain above it and it give the highest contribution to the overall entropy generation. When location of the curved porous layer is varied, the highest variation of entropy generation is attained for the domain below it while the lowest value is obtained at yp=0.3H. When the size of elliptic curvature is varied, the overall entropy generation decreases from b = 0 to b=0.2H by about 10% and then increases by 5% from b=0.2H to b=0.3H.  相似文献   

16.
A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width δr between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass M of the black hole, scaling as δrM3; (b) for supermassive black holes δr is typically orders of magnitude larger than the Planck length lP. Instead, for typical stellar-mass black holes, δr may drop well below lP. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons.  相似文献   

17.
The ratio between the Landé g‐factors of the 87 Rb F = 2 and 85 Rb F = 3 ground‐state hyperfine levels is experimentally measured to be g F ( 87 ) / g F ( 85 ) = 1.4988586 ( 1 ) , consistent with previous measurements. The g‐factor ratio is determined by comparing the Larmor frequencies of overlapping ensembles of 87 Rb and 85 Rb atoms contained within an evacuated, antirelaxation‐coated vapor cell. The atomic spins are polarized via synchronous optical pumping and the Larmor frequencies are measured by off‐resonant probing using optical rotation of linearly polarized light. The accuracy of this measurement of g F ( 87 ) / g F ( 85 ) exceeds that of previous measurements by a factor of ≈50 and is sensitive to effects related to quantum electrodynamics.  相似文献   

18.
19.
The q-exponential form eqx[1+(1q)x]1/(1q)(e1x=ex) is obtained by optimizing the nonadditive entropy Sqk1ipiqq1 (with S1=SBGkipilnpi, where BG stands for Boltzmann–Gibbs) under simple constraints, and emerges in wide classes of natural, artificial and social complex systems. However, in experiments, observations and numerical calculations, it rarely appears in its pure mathematical form. It appears instead exhibiting crossovers to, or mixed with, other similar forms. We first discuss departures from q-exponentials within crossover statistics, or by linearly combining them, or by linearly combining the corresponding q-entropies. Then, we discuss departures originated by double-index nonadditive entropies containing Sq as particular case.  相似文献   

20.
We explore the quadratic form of the f(R)=R+bR2 gravitational theory to derive rotating N-dimensions black hole solutions with ai,i1 rotation parameters. Here, R is the Ricci scalar and b is the dimensional parameter. We assumed that the N-dimensional spacetime is static and it has flat horizons with a zero curvature boundary. We investigated the physics of black holes by calculating the relations of physical quantities such as the horizon radius and mass. We also demonstrate that, in the four-dimensional case, the higher-order curvature does not contribute to the black hole, i.e., black hole does not depend on the dimensional parameter b, whereas, in the case of N>4, it depends on parameter b, owing to the contribution of the correction R2 term. We analyze the conserved quantities, energy, and angular-momentum, of black hole solutions by applying the relocalization method. Additionally, we calculate the thermodynamic quantities, such as temperature and entropy, and examine the stability of black hole solutions locally and show that they have thermodynamic stability. Moreover, the calculations of entropy put a constraint on the parameter b to be b<116Λ to obtain a positive entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号