首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct allylic substitution reaction using allylic alcohols in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE) as reaction media is described. The developed procedure is simple, works under mild conditions (rt, 50 and 70 °C), and proves to be very general, since different nitrogenated nucleophiles and carbon nucleophiles can be used achieving high yields, especially when HFIP is employed as solvent and aromatic allylic alcohols are the substrates. Thus, sulfonamides, carbamates, carboxamides, and amines can be successfully employed as nitrogen-based nucleophiles. Likewise, silylated nucleophiles such as trimethylsilylazide, allyltrimethylsilane, trimethylsilane, and trimethylsilylphenylacetylene give the corresponding allylic substitution products in high yields. Good results for the Friedel-Crafts adducts are also achieved with aromatic compounds (phenol, anisole, indole, and anilines) as nucleophiles. Particularly interesting are the results obtained with electron-rich anilines, which can behave as nitrogenated or carbon nucleophiles depending on their electronic properties and the solvent employed. In addition, 1,3-dicarbonyl compounds (acetylacetone and Meldrum's acid) are also successfully employed as soft carbon nucleophiles. Studies for mechanism elucidation are also reported, pointing toward the existence of carbocationic intermediates and two working reaction pathways for the obtention of the allylic substitution product.  相似文献   

2.
The acid‐catalyzed benzylic and allylic alkylation of protic nucleophiles is fundamentally important for the formation of carbon? carbon and carbon? heteroatom bonds, and it is a formidable challenge for benzylic and allylic amine derivatives to be used as the alkylating agents. Herein we report a highly efficient benzylic and allylic alkylation of protic carbon and sulfur nucleophiles with sulfonamides through double Lewis acid catalyzed cleavage of sp3 carbon–nitrogen bonds at room temperature. In the presence of a catalytic amount of inexpensive ZnCl2‐TMSCl (TMSCl: chlorotrimethylsilane), 1,3‐diketones, β‐keto esters, β‐keto amides, malononitrile, aromatic compounds, thiols, and thioacetic acid can couple with a broad range of tosyl‐activated benzylic and allylic amines to give diversely functionalized products in good to excellent yields and with high regioselectivity. Furthermore, the cross‐coupling reaction of 1,3‐dicarbonyl compounds with benzylic propargylic amine derivatives has been successfully applied to the one‐step synthesis of polysubstituted furans and benzofurans.  相似文献   

3.
铱催化不对称烯丙基取代反应的研究进展   总被引:1,自引:0,他引:1  
吴钰娟  杨定乔  龙玉华 《有机化学》2009,29(10):1522-1532
铱催化不对称烯丙基取代反应是一种合成手性支链化合物的重要方法, 综述了近年来铱催化的烯丙基衍生物取代反应的研究进展, 重点讨论了配体和烯丙基衍生物结构, 亲核试剂的类型, 溶剂及添加剂等因素对烯丙基取代反应的影响, 并对烯丙基取代反应的对映选择性和区域选择性进行了探讨.  相似文献   

4.
ABSTRACT

The reactivity of the title compounds has been studied toward different nucleophiles and electrophiles. Unlike other ketene dithioacetals, compounds 3-5 did not add nucleophiles to the double bond. Instead, in the presence of Lewis acids they underwent substitution reaction at position 3. If the nucleophile was not strong enough, formation of 6 and 7 were observed. With 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose (18), a 3:1 mixture of 11 and 12 was formed from 4. These observations may be interpreted in terms of easy formation of the allylic carbocation I which gives diastereomers with nucleophiles. However, this allylic ether-like behaviour was ruled out by the fact that compounds 9 and 10 did not undergo [2,3] sigmatropic rearrangement with lithium diisopropylamide. With N-bromosuccinimide compound 3 gave the 2-bromo derivative 8. Compounds 3 and 8 resisted common mercury salt assisted demercaptalization procedures.  相似文献   

5.
Metal-catalyzed enantioselective allylation, which involves the substitution of allylic metal intermediates with a diverse range of different nucleophiles or S(N)2'-type allylic substitution, leads to the formation of C-H, -C, -O, -N, -S, and other bonds with very high levels of asymmetric induction. The reaction may tolerate a broad range of functional groups and has been applied successfully to the synthesis of many natural products and new chiral compounds.  相似文献   

6.
Naoyoshi Maezaki 《Tetrahedron》2006,62(44):10361-10378
Highly stereoselective synthesis of 1,4-bifunctional compounds was accomplished via 1,2-asymmetric induction to α-oxyaldehyde and α-oxyketone followed by regio- and diastereoselective Pd-catalyzed allylic substitution reaction. We found that trifluoroacetate is a suitable leaving group for the allylic substitution reaction. Various nucleophiles containing carbon, nitrogen, and sulfur can be applied to the method. Both 1,4-syn- and 1,4-anti-adducts were synthesized with high stereoselectivity by using stereodivergent reduction of the propargyl alcohols followed by allylic substitution reaction.  相似文献   

7.
Although the palladium-catalyzed Tsuji-Trost allylic substitution reaction has been intensively studied, there is a lack of general methods to employ simple benzylic nucleophiles. Such a method would facilitate access to "α-2-propenyl benzyl" motifs, which are common structural motifs in bioactive compounds and natural products. We report herein the palladium-catalyzed allylation reaction of toluene-derived pronucleophiles activated by tricarbonylchromium. A variety of cyclic and acyclic allylic electrophiles can be employed with in situ generated (η(6)-C(6)H(5)CHLiR)Cr(CO)(3) nucleophiles. Catalyst identification was performed by high throughput experimentation (HTE) and led to the Xantphos/palladium hit, which proved to be a general catalyst for this class of reactions. In addition to η(6)-toluene complexes, benzyl amine and ether derivatives (η(6)-C(6)H(5)CH(2)Z)Cr(CO)(3) (Z = NR(2), OR) are also viable pronucleophiles, allowing C-C bond-formation α to heteroatoms with excellent yields. Finally, a tandem allylic substitution/demetalation procedure is described that affords the corresponding metal-free allylic substitution products. This method will be a valuable complement to the existing arsenal of nucleophiles with applications in allylic substitution reactions.  相似文献   

8.
Ueki H  Chiba T  Kitazume T 《Organic letters》2005,7(7):1367-1370
[reaction: see text] gem-Difluorinated vinyloxiranes are versatile building blocks for the synthesis of fluorinated compounds. Investigations of their reactions with nucleophiles resulted in highly regio- and stereoselective reductions. In their reactions with LiAlH4, hydride reacted at the allylic epoxide carbon to produce homoallylic alcohols exclusively. Moreover, regio- and stereoselective S(N)2' reactions were observed with DIBAL-H and BH3 x THF; the former afforded E allylic alcohols, whereas the latter furnished the corresponding Z isomers with excellent selectivities.  相似文献   

9.
Described herein is an asymmetric allylic aromatization (AAAr) strategy that employs readily accessible equivalents of benzylic nucleophiles in iridium‐catalyzed allylic substitution reactions with the concomitant formation of aromatic rings by aromatization. The optimized reaction conditions involving a catalyst derived from a commercially available iridium precursor and the Carreira ligand are compatible with equivalents of benzylic nucleophiles derived from 4‐ or 5‐methyloxazoles, 5‐methylthiazoles, 4‐ or 5‐methylfurans, 2‐ or 3‐methylbenzofurans, 3‐methylbenzothiophene, 3‐methylindole, 1‐methylnaphthalene, and methylbenzene. This strategy provides straightforward accesses to valuable heterocyclic aromatic compounds, bearing a homobenzylic stereogenic center, in an enantiopure form and would be difficult to access otherwise. The versatility of the reaction was showcased by the further elaboration of the products into useful building blocks and a drug analogue.  相似文献   

10.
We report a strategy for the employment of highly unstabilized anions in palladium-catalyzed asymmetric allylic alkylations (AAA). The "hard" 2-methylpyridyl nucleophiles studied are first reacted in situ with BF3.OEt2; subsequent deprotonation of the resulting complexes with LiHMDS affords "soft" anions that are competent nucleophiles in AAA reactions. The reaction is selective for the 2-position of methylpyridines and tolerates bulky aryl and alkyl substitution at the 3-, 4-, and 5-positions. Investigations into the reaction mechanism demonstrate that the configuration of the allylic stereocenter is retained, consistent with the canonical outer sphere mechanism invoked for palladium-catalyzed allylic substitution processes of stabilized anions.  相似文献   

11.
An enantioselective synthesis of allylic esters has been achieved by a novel asymmetric alkylation of allylic gem-dicarboxylates. The catalyst derived from palladium(0) and R,R-1,2-di(2'-diphenylphosphinobenzamido)cyclohexene efficiently induced the alkylation process with a variety of nucleophiles to provide allylic esters as products in good yield. High regio- and enantioselectivities were observed in the alkylation with most nucleophiles derived from malonate, whereas a modest level of ee's was obtained in the reactions with less reactive nucleophiles such as bis(phenylsulfonyl)ethane. In the latter case, a slow addition procedure proved effective, leading to significantly improved ee's. The utility of the alkylation products was demonstrated by several synthetically useful transformations including allylic isomerizations, allylic alkylations, and Claisen rearrangements. Using these reactions, the chirality of the initial allylic carbon-oxygen bond could be transferred to new carbon-oxygen, carbon-carbon, or carbon-nitrogen bonds in a predictable fashion with high stereochemical fidelity. The conversion of gem-diesters to chiral esters by the substitution reaction is the equivalent of an asymmetric carbonyl addition by stabilized nucleophiles. In conjunction with the subsequent reactions that occur with high stereospecificity, allylic gem-dicarboxylates serve as synthons for a double allylic transformation.  相似文献   

12.
Metal‐catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon‐carbon and carbon‐heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN2′‐type allylic substitution, which results in the formation of the above‐mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)‐catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.  相似文献   

13.
[reaction: see text] The viability of oximes as nucleophiles in transition-metal-catalyzed allylic substitution was examined. The oxygen atom of oxime acted as a reactive nucleophile in the reaction of a pi-allyl palladium complex. In the presence of Pd(PPh3)4, the allylic substitution of oximes with allylic carbonate afforded the linear O-allylated oxime ethers selectively without a base. In contrast, the palladium-catalyzed reaction with allylic acetate proceeded smoothly in the presence of K2CO3 or Et2Zn as a base. Selective formation of nitrones was achieved by using palladium(II) catalyst. In the presence of Pd(cod)Cl2, the allylic substitution of oximes with allylic acetate afforded the N-allylated nitrones under solvent-free conditions, as a result of the reaction with the nitrogen atom of oximes.  相似文献   

14.
Enantiomerically pure 4,6-diaminocyclohexenols are obtained from carbohydrate derived 1,7-dienes by ring-closing metathesis and palladium catalyzed allylic amination using o-nitrobenzenesulfonylamides as nucleophiles. In the latter reaction the use of a cyclic carbonate as a leaving group proved to be essential to facilitate a smooth substitution. The obtained compounds were converted into orthogonally protected diaminocyclitols, which are stereoisomers of the naturally occurring 2-deoxystreptamine, a constituent of aminoglycoside antibiotics.  相似文献   

15.
Latent nucleophiles are compounds that are themselves not nucleophilic but can produce a strong nucleophile when activated. Such nucleophiles can expand the scope of Lewis base catalyzed reactions. As a proof of concept, we report that N‐silyl pyrroles, indoles, and carbazoles serve as latent N‐centered nucleophiles in substitution reactions of allylic fluorides catalyzed by Lewis bases. The reactions feature broad scopes for both reaction partners, excellent regioselectivities, and produce enantioenriched N‐allyl pyrroles, indoles, and carbazoles when chiral cinchona alkaloid catalysts are used.  相似文献   

16.
The synthesis of the trifluoromethyl group containing enol ethers by the palladium-catalyzed intermolecular reaction of 2,3,3-trifluoroallylic carbonates with oxygen nucleophiles was accomplished. The reaction proceeds through the intermolecular attack of oxygen nucleophiles on the C-2 carbon atom of the allylic unit, and the intramolecular fluorine atom shift from the C-2 position to the C-3 position. The reactions with several types of alcohols and phenols proceeded smoothly, and afforded the corresponding trifluoromethyl group containing enol ethers in good to high yields.  相似文献   

17.
New advances in the functionalization of unactivated olefins with carbon nucleophiles have provided more efficient and practical approaches to convert inexpensive starting materials into valuable products. Recent examples have been reported with stabilized carbon nucleophiles, tethered carbon nucleophiles, diazoesters, and trifluoromethane donors. A general method for functionalizing olefins with aromatic, aliphatic, and vinyl Grignard reagents was developed. In a one‐pot process, olefins are oxidized by a commercially available reagent to allylic electrophiles, which undergo selective copper‐catalyzed allylic alkylation with Grignard reagents. Products are formed in high yield and with high regioselectivity. This was utilized to synthesize a series of skipped dienes, a class of compounds that are prevalent in natural products and are difficult to synthesize by known allylic alkylation methods.  相似文献   

18.
[structure: see text] A set of chiral beta-seleno amides have been efficiently synthesized via the ring-opening reaction of chiral 2-oxazolines by selenium nucleophiles. The present method is applicable to the synthesis of beta-seleno amides containing thioether, alcohol, and ether moieties in good yields. As an application, the synthesis of a selenocysteine derivative has been accomplished. Additionally, these new compounds were evaluated in the palladium-catalyzed asymmetric allylic alkylation, giving the alkylated products in up to 98% ee.  相似文献   

19.
Huang D  Wang H  Guan H  Huang H  Shi Y 《Organic letters》2011,13(6):1548-1551
A mild acid-catalyzed formal allylic C-H oxidation of aryl cycloalkenes with N-propylthiosuccinimide in the presence of various nucleophiles to generate allylic ethers, esters, and sulfonamides is described. A possible reaction mechanism has been proposed.  相似文献   

20.
Metal-catalyzed allylic alkylation reactions between dual nucleophiles and dual electrophiles represent a powerful set of methods for the synthesis of small-, medium-, and even large-sized rings. Using this strategy, a handful of simple allylic diol derivatives can be transformed into a broad array of complex carbo- and heterocycles of varying ring sizes in just a single step. Because of their ability to rapidly generate complexity, annulative allylic alkylation reactions between dual nucleophiles and dual electrophiles have been extensively employed in the total synthesis of both natural products and pharmaceutical compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号