首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The melting and crystallization behavior of poly(L -lactic acid) (PLLA; weight-average molecular weight = 3 × 105) was studied with differential scanning calorimetry (DSC). DSC curves for PLLA samples were obtained at various cooling rates (CRs) from the melt (210 °C). The peak crystallization temperature and the exothermic heat of crystallization determined from the DSC curve decreased almost linearly with increasing log(CR). DSC melting curves for the melt-crystallized samples were obtained at various heating rates (HRs). The double-melting behavior was confirmed by the double endothermic peaks, a high-temperature peak (H) and a low-temperature peak (L), that appeared in the DSC curves at slow HRs for the samples prepared with a slow CR. Peak L increased with increasing HR, whereas peak H decreased. The peak melting temperatures of L and H [Tm(L) and Tm(H)] decreased linearly with log(HR). The appearance region of the double-melting peaks (L and H) was illustrated in a CR–HR map. Peak L decreased with increasing CR, whereas peak H increased. Tm(L) and Tm(H) decreased almost linearly with log(CR). The characteristics of the crystallization and double-melting behavior were explained by the slow rates of crystallization and recrystallization, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 25–32, 2004  相似文献   

2.
Wang  S. X.  Tan  Z. C.  Di  Y. Y.  Xu  F.  Wang  M. H.  Sun  L. X.  Zhang  T. 《Journal of Thermal Analysis and Calorimetry》2004,76(1):335-342
As one primary component of Vitamin B3, nicotinic acid [pyridine 3-carboxylic acid] was synthesized, and calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of nicotinic acid was measured with a precise automated adiabatic calorimeter over the temperature rang from 79 to 368 K. No thermal anomaly or phase transition was observed in this temperature range. A solid-to-solid transition at T trs=451.4 K, a solid-to-liquid transition at T fus=509.1 K and a thermal decomposition at T d=538.8 K were found through the DSC and TG-DTG techniques. The molar enthalpies of these transitions were determined to be Δtrs H m=0.81 kJ mol-1, Δfus H m=27.57 kJ mol-1 and Δd H m=62.38 kJ mol-1, respectively, by the integrals of the peak areas of the DSC curves. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Structural changes during thermally induced crystallization and alkaline hydrolysis of Poly(l-lactic acid) (PLLA) films were investigated using differential scanning calorimetry (DSC), FTIR spectroscopy, weight loss, HPLC and optical microscopy. It was shown that crystallinity (χc), glass transition temperature (Tg) and melting temperature (Tm) were found to be strongly annealing temperature (Ta) dependent. The FTIR study of PLLA films suggested that the bands at 921 and 956 cm−1 could be used to monitor the structural changes of PLLA. An independent infrared spectroscopic method was developed for the first time to determine crystallinity of PLLA before degradation and it showed good qualitative correlation with DSC crystallinity. The higher crystallinity values determined by FTIR were attributed to the intermediate phase included in the IR crystallinity. Both the weight loss data and the percentage of lactic acid obtained by HPLC showed that the alkaline hydrolysis of PLLA films increased with increasing crystallinity. The DSC observation showed an increase in Tg and no significant change in Tm and heat of fusion, while IR showed an increase in IR crystallinity with increasing hydrolysis time. The increase in IR crystallinity and Tg with hydrolysis time suggested that degradation progressed from the edges of the crystalline lamellas without decreasing lamellar thickness, but increased the intermediate phase and the short-range order.  相似文献   

4.
Simultaneous measurement system of DSC-Raman spectroscopy and its analysis method are developed. The developed method was applied to the melting of Indium and the optimum laser irradiation condition was determined. The obtained result of the heat flow is similar to the modulated DSC and the precise melting temperature and the heat of fusion can be obtained from the analyzed DSC. DSC-Raman spectroscopy is also applied to PLLA. Analyzed data indicate the existence of the recrystallization behavior in addition to T g and T m. Corresponding to these transitions, Raman peak shifts, intensities, and widths varied. From those results, it is proved that DSC-Raman spectroscopy is useful for the analysis of thermal property of the polymer in connection with the polymer structure.  相似文献   

5.
The thermal behaviour of salicylsalicylic acid (CAS number 552-94-3) was studied by differential scanning calorimetry (DSC). The endothermic melting peak and the fingerprint of the glass transition were characterised at a heating rate of 10°C min-1. The melting peak showed an onset at T on = 144°C (417 K) and a maximum intensity at T max = 152°C (425 K), while the onset of the glass transition signal was at T on = 6°C. The melting enthalpy was found to be ΔmH = 28.9±0.3 kJ mol-1, and the heat capacity jump at the glass transition was ΔC P = 108.1±0.1 J K-1mol-1. The study of the influence of the heating rate on the temperature location of the glass transition signal by DSC, allowed the determination of the activation energy at the glass transition temperature (245 kJ mol-1), and the calculation of the fragility index of salicyl salicylate (m = 45). Finally, the standard molar enthalpy of formation of crystalline monoclinic salicylsalicylic acid at T = 298.15 K, was determined as ΔfHm o(C14H10O5, cr) = - (837.6±3.3) kJ mol-1, by combustion calorimetry. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(22) 5845 New multiblock copolymers derived from poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) were prepared with the coupling reaction between PLLA and PCL oligomers with ? NCO terminals. Fourier transform infrared (FTIR), 13C NMR, and differential scanning calorimetry (DSC) were used to characterize the copolymers and the results showed that PLLA and PCL were coupled by the reaction between ? NCO groups at the end of the PCL and ? OH (or ? COOH) groups at the end of the PLLA. DSC data indicated that the different compositions of PLLA and PCL had an influence on the thermal and crystallization properties including the glass‐transition temperature (Tg), melting temperature (TM), crystallizing temperature (Tc), melting enthalpy (ΔHm), crystallizing enthalpy (ΔHc), and crystallinity. Gel permeation chromatography (GPC) was employed to study the effect of the composition of PLLA and PCL and reaction time on the molecular weight and the molecular weight distribution of the copolymers. The weight‐average molecular weight of PLLA–PCL multiblock copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL, whereas that of the homopolymer of PLLA was only 14,000. A polarized optical microscope was used to observe the crystalline morphology of copolymers; the results showed that all polymers exhibited a spherulitic morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5045–5053, 2004  相似文献   

7.
The current demand for environmentally degradable copolymers has initiated the use of novel degradable copolyesters. One of them is a copolyester based on poly(ethylene terephthalate-co-glycolic acid) (PET-GLA). The copolymer was synthesized by the melt reaction of bis-2-hydroxyethyl terephthalate (BHET) with glycolic acid (GLA) oligomers in the presence of Sb2O3 as a catalyst.Hydrolytic degradation of the copolymer was carried out in two buffered solutions at 45 °C: degradation was studied by incubating samples in powder form, in a concentrated solution from 30 to 150 days.The copolymer before and after degradation was characterized by means of different analytical techniques. 1H and 13C NMR spectroscopy was used to confirm the incorporation of glycolide units in PET chains and to observe the structure and decomposition of the novel polyester. The thermal properties and morphology before and during the degradation were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis for determining melting points as well as melting and decomposition temperatures of investigated copolyester.  相似文献   

8.
Random ethylene/1-hexene copolymers with the 1-hexene content in the range from 2 to 28 mol% were produced with a novel post-metallocene catalyst and analyzed by three techniques, FTIR, 13C NMR, and DSC. The 1-hexene content and the sequence distribution in the copolymers were determined by means of FTIR-M and 13C NMR. The crystallization behavior of the copolymers was studied by DSC under dynamic and isothermal conditions; the Avrami model was used to analyze the crystallization kinetics. It was found that both the 1-hexene content and the crystallization temperature affect the relative crystallinity. The bulk crystallization rate decreases with the 1-hexene content and reduces exponentially with an increase of T c. The melting behavior of isothermally crystallized samples was also investigated and it was found that the melting temperatures of the copolymers under equilibrium conditions were related to the composition.  相似文献   

9.
Because poly(L ‐lactic acid) (PLLA) is a biodegradable polyester with low immunogenicity and good biocompatibility, it is used as a biomaterial. However, hydrophobic PLLA does not have any reactive groups. Thus, its application is limited. To increase the hydrophilicity of PLLA and accelerate its degradation rate, functionalized pendant groups and blocks were introduced through copolymerization with citric acid and poly(ethylene glycol) (PEG), respectively. This article describes the synthesis and characterization of poly(L ‐lactic‐co‐citric acid) (PLCA)‐PLLA and PLCA‐PEG multiblock copolymers. The results indicated that the hydrolysis rate was enhanced, and the hydrophilicity was improved because of the incorporation of carboxyl groups in PLCA‐PLLA. The joining of the PEG block led to improved hydrophilicity of PLCA, and the degradation rate of PLCA‐PEG accelerated as compared with that of PLCA‐PLLA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2073–2081, 2003  相似文献   

10.
Poly(lactic acid) (PLA) stereocomplexes have high potential as renewable materials for advanced polymer applications, mainly due to their high melting temperature (Tm, typically 230–240°C). The properties of PLA stereocomplexes consisting of linear high molar mass homopolymers have been studied extensively in the past, but the available information about the possibilities to affect the thermal properties of the stereocomplex by varying the structure of the blend components has not been sufficient. Novel stereocomplexes containing linear or star‐shaped D ‐lactic acid (D ‐LA) oligomers and high molar mass poly(L ‐lactide) (L‐ PLA) were thus prepared. The Tm and melting enthalpy (ΔHm) of the racemic crystallites were found to depend strongly on both the blending ratio and the arm‐length of the D ‐lactic acid oligomer. The preparation method of the oligomers, i.e. step‐growth polymerization or ring‐opening polymerization (ROP), did not affect the Tm or ΔHm of the blends significantly. Slightly higher ΔHm values were, however, obtained, when linear oligomers were used. The results thus indicated that the Tm and ΔHm of PLA stereocomplexes could be optimized, simply by selecting a D ‐LA oligomer having a suitable arm‐length and structure as the other blend component. The possibility to adjust the melting behavior of the stereocomplex blend is a significant advantage and could make PLA suitable for a wider range of products used at elevated temperatures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Poly(lactic acid)/organo-montmorillonite nanocomposites were prepared by melt intercalation technique. Maleic anhydride-grafted ethylene propylene rubber (EPMgMA) was added into the PLA/OMMT in order to improve the compatibility and toughness of the nanocomposites. The samples were prepared by single screw extrusion followed by compression molding. The effect of OMMT and EPMgMA on the thermal properties of PLA was studied. The thermal properties of the PLA/OMMT nanocomposites have been investigated by using differential scanning calorimeter (DSC) and thermo-gravimetry analyzer (TG). The melting temperature (T m), glass transition temperature (T g), crystallization temperature (T c), degree of crystallinity (χc), and thermal stability of the PLA/OMMT nanocomposites have been studied. It was found that the thermal properties of PLA were greatly influenced by the addition of OMMT and EPMgMA.  相似文献   

12.
Reaction of (diacetoxyiodo)benzene [PhI(OAc)2] in trifluoromethanesulfonic acid (TfOH) resulted in oligomerization of PhI(OAc)2. Quenching with NaBr gave the bromide salts of hypervalent iodine oligomers that were determined by thermolysis with KI to be a para phenylene type of oligomers. Neutralization of the reaction mixture of PhI(OAc)2 and TfOH with aqueous NaHCO3 yielded the triflate salts of iodine oligomers. Furthermore, quenching the reaction mixture with aromatic substrates afforded arylated iodine oligomers. These iodine oligomers were found to be 3-4 of the number average degree of polymerization (Pn) by GC analysis of the thermolysis products and 1H NMR analysis. The major products, trimer and tetramer, were synthesized independently.  相似文献   

13.
A series of copolyamides 12.y was synthesized either with y = 6, or 1,4‐cyclohexanedicarboxylic acid (1,4‐CHDA) residue, or a mixture of both. The influence of the synthetic route of 1,4‐CHDA containing polyamides on the obtained cis–trans ratio of the incorporated 1,4‐CHDA was investigated. The use of acid chlorides provided a synthetic route with full control of the cis–trans ratio of the 1,4‐CHDA residue during synthesis, whereas synthesis at elevated pressure and temperature caused isomerization. The content and cis–trans ratio of 1,4‐CHDA in the copolyamides were determined by solution 13C NMR spectroscopy. Increasing the degree of partial substitution of the adipic acid by 1,4‐CHDA resulted in an increase in Tm, even for low molar precentages of 1,4‐CHDA. This phenomenon points to isomorphous crystallization of both the 12.6 and 12.CHDA repeating units. The mps of the synthesized polyamides were independent of the initial cis–trans ratio of 1,4‐CHDA, provided that the samples were annealed at 300 °C before DSC analysis. The polyamides exhibited a different melting pattern depending on the 1,4‐CHDA content. At a low a 1,4‐CHDA content a net exothermic recrystallization occurred during melting, whereas at higher contents of 1,4‐CHDA this recrystallization occurs to a lesser extent, and two separate melting areas are observed. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 833–840, 2001  相似文献   

14.
The thermal properties of caprolactam/long chain lactam copolymer were studied with a Perkin-Elmer DSC 7. The melting point (T m), heat of fusion (δH m), crystalline degree (X c), crystallization temperature (T c) and glass transition temperature (T g) of the copolymers increase with decrease of the content of the log chain lactam. From the changes in the mechanical properties with corresponding changes in the thermal properties, it is clear that the copolymers are thermal plastic and elastic. In addition, it is found that the results at a heating rate of 10 deg·min?1 are almost the same as that at 20 deg·min?1 after thermal history is erased.  相似文献   

15.
CaCO3/PEEK (poly-ether ether ketone) composites were prepared on a twin-screw extruder with different mass ratio of CaCO3/PEEK from 0% to 30%. Four types of particles were used as filler in PEEK matrix. The influence of surface treatment with sulfonated PEEK (SPEEK) of the particles on the mechanical and thermal properties of the composites was studied. The experiments included tensile tests, flexural tests, notched Izod impact tests, TGA, DSC and SEM. The modulus and yield stress of the composites increased with CaCO3 particles loadings. This increase was attributed to the bonding between the particles and the PEEK matrix, as can be proved by the SEM pictures of tensile fracture surface of the composites. The impact strength of the composites was modified by the SPEEK coated on the CaCO3 particle surface. DSC experiments showed that the particle content and surface properties influenced the glass transition temperature (Tg) and melting temperature (Tm) of the composites. The Tg increased with the content of fillers while Tm decreased. In this study the fillers treated were found to give better combination properties, which indicated that SPEEK played a constructive role in the CaCO3/PEEK composites.  相似文献   

16.
New aliphatic-aromatic and fully aromatic phosphonate polyamides were prepared by polycondensation reaction of our synthesized aromatic diamine: tetraethyl[(2,5-diamino-3,6-dimethylbenzene-1,4-diyl)dimethanediyl]bis(phosphonate) with the specific di-acylchloride (adipoyl chloride, isophthaloyl chloride and terephthaloyl chloride). The chemical structure of all samples were characterized by (1H and 31P) NMR, MALDI-TOF MS, FT-IR tools, whereas their thermal properties were determined by DSC and TGA techniques. The phosponate polyadipamide (referred as PAP) is a semi-crystalline sample with a melting temperature at about 261 °C and glass transition (Tg) of 71 °C. All polymers show two thermal degradation steps in the temperature range 270-550 °C. Each polymer, independently its structure, shows the first maximum rate of thermal decomposition temperature (PDT) around 300-310 °C, which may be due to thermal degradation of phoshonate groups. MALDI-TOF spectra, beside the linear oligomers terminated with the specific groups expected in accord to the synthesis procedure, reveals the presence of cyclic oligomers in the polyadipamide and polyisophthalamide samples.  相似文献   

17.
This study examined copolymers synthesized from poly(trimethylene terephthalate) (PTT) and p-acetoxybenzoic acid using solution proton nuclear magnetic resonance (NMR) spectroscopy. Proton NMR spectra showed that these p-oxybenzoate (POB)/PTT copolyesters were almost random copolymers because the preference factor of POB bonded to another POB unit in these copolyesters is close to 1.0 with a POB content between 20 and 80 mol%.The melting and crystallization behaviors of these copolyesters were studied by differential scanning calorimetry (DSC). In the heating DSC scan of the POB rich composition, the endothermic peak is weaker because the enthalpy of fusion decreased due to a melting transition from a crystalline to anisotropy liquid state. Thermogravimetric analysis results indicated that the decomposition temperature (Td) increased with POB content. The crystalline morphology of the copolyester was further investigated with a polarized optical microscope, indicating that the POB/PTT copolyesters with 60 mol% POB are highly anisotropic in the liquid state.  相似文献   

18.
The heat capacities of chrysanthemic acid in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The chrysanthemic acid sample was prepared with the purity of 0.9855 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, Δfus H m, Δfus S m, were determined to be 390.741±0.002 K, 14.51±0.13 kJ mol-1, 37.13±0.34 J mol-1 K-1, respectively. The thermodynamic functions of chrysanthemic acid, H (T)-H(298.15), S (T)-S(298.15) and G (T)-G (298.15) were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min-1 confirmed that the thermal decomposition of the sample starts at ca. 410 K and terminates at ca. 471 K. The maximum decomposition rate was obtained at 466 K. The purity of the sample was determined by a fractional melting method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Non-isothermal and isothermal crystallization behaviors of polystyrene-b-poly(ethylene-co-butene) (PSt-b-PEB) block copolymers with different compositions and chain lengths were investigated by differential scanning calorimetry (DSC). The results show that crystallization of PEB block is strongly dependent on the composition. Crystallization temperature (Tc), melting temperature (Tm) and fusion enthalpy (ΔHf) increase rapidly with PEB volume fraction (VE) for block copolymers with VE below 50%, but there is little change when PEB block becomes the major component. Glass transition temperature (Tg) of the PSt block and order-disorder transition temperature (TODT) of block copolymers also have a weak effect. The isothermal crystallization kinetics results show that Avrami exponent (n) was strongly dependent on the composition and crystallization temperature. For the block copolymers with VE below 38.7 vol%, the values of n vary between 0.9 and 1.3, indicating that crystallization is confined. For the PSt-b-PEB block copolymers with VE higher than 50%, fractionated crystallization behavior is usually observed. A two-step isothermal crystallization procedure is applied to these block copolymers. It is found that breakout crystallization occurs at higher Tc, but confined at lower Tc. Two overlapped melting peaks are observed for the block copolymers with fractionated crystallization behavior after two-step crystallization, and only the higher melting peak corresponding to breakout crystallization can be used to derive equilibrium melting temperature.  相似文献   

20.
Poly(butylene succinate-co-butylene dimerized fatty acid) (P(BS-co-BDFA)) copolyesters were synthesized from succinic acid (SA) and dimerized fatty acid (DFA) with 1,4-butanediol (BDO) through a two-step process of esterification and polycondensation. The polyester compositions and physical properties of copolyesters were investigated by GPC, 1H NMR and 13C NMR, DSC, WAXD, DMA, TGA, tensile and rheology test. The melting temperature (Tm), and crystallization temperature (Tc) decreased gradually as the content of DFA monomer increased. P(BS-co-BDFA) copolyesters showed the same crystal structure as the PBS homopolyester. Besides, TGA results indicated that P(BS-co-BDFA)s were of higher thermal stabilities. Moreover, it was found that the synthesized P(BS-co-BDFA)s showed the maximum elongation at break (591%) as the DFA contents were 10 mol%. Rheology analysis indicated that the viscoelastic behavior of the polyesters greatly depended on the molecular weight of polyesters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号