共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin 总被引:1,自引:0,他引:1
Ran Liu 《Polymer Degradation and Stability》2009,94(4):617-624
Hexakis(4-hydroxyphenoxy)-cyclotriphosphazene (PN-OH) was synthesized through nucleophilic substitution of the chloride atoms of hexachlorocyclotriphosphazene and reduction of the aldehyde groups, and its chemical structure was characterized by elemental analysis, 1H and 31P NMR, and Fourier transform infrared (FTIR) spectroscopy. A new phosphazene-based epoxy resin (PN-EP) was successfully synthesized through the reaction between diglycidyl ether of bisphenol-A (DGEBA) and PN-OH, and its chemical structure was confirmed by FTIR and gel permeation chromatography. Four PN-EP thermosets were obtained by curing with 4,4′-diaminodiphenylmethane (DDM), dicyandiamide (DICY), novolak and pyromellitic dianhydride (PMDA). The reactivity of PN-EP with the four curing agents presents an increase in the order of DDM, PMDA, novolak and DICY. An investigation on their thermal properties shows that the PN-EP thermosets achieve higher glass-transition and decomposition temperatures in comparison with the corresponding DGEBA ones while their char yields increase significantly. The PN-EP thermosets also exhibit excellent flame retardancy. The thermosets with novolak, DICY and PMDA achieve the LOI values above 30 and flammability rating of UL94 V-0, whereas the one with DDM reaches the V-1 rating. The nonflammable halogen-free epoxy resin synthesized in this study has potential applications in electric and electronic fields in consideration of the environment and human health. 相似文献
2.
Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin 总被引:1,自引:0,他引:1
Baljinder K. Kandola Bhaskar Biswas Dennis Price A. Richard Horrocks 《Polymer Degradation and Stability》2010,95(2):144-152
A thermoplastic toughener, polyether sulphone (PES) and a number of different types of flame retardants were blended in different ratios with a commercial epoxy resin triglycidyl-p-aminophenol (TGAP) and 4,4-diamino diphenyl sulphone (DDS) a curing agent. The effect of type and levels of flame retardants (FR) and the toughening agent on the curing, thermal decomposition and char oxidation behaviour of the epoxy resin was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. It was observed that the toughener slightly increases the curing temperature (by up to 20 °C) but had minimal effect on the decomposition temperature of the resin. Flame retardants, however affected all stages depending upon the type of flame retardant used. The curing peak for samples containing tougher and flame retardants although slightly changed depending upon the type of FR, was not more than ± 20 °C compared to that of samples containing toughener only. All flame retardants lowered the decomposition temperature of the epoxy resin. Phosphorus- and nitrogen-containing flame retardants reduced the char oxidation leading to more residual char, whereas halogen- containing flame retardants had less effect on this stage. 相似文献
3.
Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins 总被引:1,自引:0,他引:1
Dechao SunYouwei Yao 《Polymer Degradation and Stability》2011,96(10):1720-1724
One symmetric diamine (4) and two symmetric phenols (5) and (6) were synthesized as phosphorus-containing flame retardants. The synthesis comprised a two-step procedure: the condensation of p-phenylenediamine with benzaldehyde, 4-hydroxybenzaldehyde and 2-hydroxybenzaldehyde respectively, followed by the addition of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide to the imine linkage. The structures of (4)-(6) were characterized by FTIR, NMR and mass spectra. (4)-(6) served as co-curing agents of diaminodiphenylmethane for epoxy resins, and epoxy thermosets exhibited excellent flame retardancy, moderate changes in glass transition temperature (Tg) and thermal stability. When the phosphorus content reached 1.0 wt.%, the epoxy resin system met the UL-94 V-0 classification and the limiting oxygen index (LOI) reached more than 35.6, probably because of the nitrogen-phosphorus synergistic effect. 相似文献
4.
Qingfeng Wang 《Polymer Degradation and Stability》2006,91(6):1289-1294
A novel hyperbranched polyphosphate ester (HPPE) was synthesized via the polycondensation of bisphenol-A as an A2 monomer and phosphoryl trichloride as a B3 monomer at 100 °C, without gelation. The initial molar ratio of A2 to B3 was set to be 1.5:1. The final product was precipitated from methanol. 31P NMR spectroscopy was used to monitor the reaction. The formed HPPE was characterized by FTIR and 1H NMR to confirm its end groups. Differential scanning calorimetry data revealed that the cured bisphenol-A epoxy resin with HPPE as a curing agent possessed improved glass transition temperature. Dynamic mechanical thermal analysis also showed the increase in the glass transition temperature. The thermal degradation properties and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI). The results showed that the incorporation of HPPE into bisphenol-A epoxy resin increased its thermal stability and char yield during the decomposition by raising the second stage decomposition temperature. The LOI value increased from 23 to 31 when HPPE, instead of bisphenol-A, was used as a curing agent. 相似文献
5.
The pyrolysis and fire behaviour of epoxy resin (EP) composites based on a novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) and diglycidyl ether of bisphenol A (DGEBA) have been investigated. The pre-reaction between the hydroxyl groups of DOPO-POSS and the epoxy groups of DGEBA at 140 °C is confirmed by FTIR, which means that DOPO-POSS molecules of hydroxyl group could easily disperse into the epoxy resin at the molecular level. The EP composites with the DOPO-POSS were prepared through a curing agent, m-phenylenediamine (m-PDA). The morphologies of the EP composites observed by SEM indicate that DOPO-POSS disperses with nano-scale particles in the EP networks, which implies good compatibility between them. The thermal properties and pyrolysis of the EP composites were analyzed by DSC and TGA, TGA-FTIR, and TGA-MS. The analysis indicates that the DOPO-POSS change the decomposition pathways of the epoxy resin and increase its residue at high temperature; moreover, the release of phosphorous products in the gas phase and the existence of Si-O and P-O structures in the residue Is noted. The fire behaviour of the EP composites was evaluated by cone calorimeter (CONE). The CONE tests show that incorporation of DOPO-POSS into epoxy resin can significantly improve the flame retardancy of EP composites. SEM and XPS were used to explore micro-structures and chemical components of the char from CONE tests of the EP composites, they support the view that DOPO-POSS makes the char strong with the involvement of Si-O and P-O structures. 相似文献
6.
A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties 总被引:1,自引:0,他引:1
A flame-retardant epoxy resin (EP) was synthesized based on a novel reactive phosphorus-containing monomer, 4-[(5,5-dimethyl-2-oxide-1,3,2-dioxaphosphorinan-4-yl)oxy]-phenol (DODPP), and its structures were characterized by FTIR, 1H NMR and 31P NMR spectra. The DODPP-EP3/LWPA (low molecular weight polyamide), which contains 2.5% phosphorus, can reach UL-94 V-0 rating and a limiting oxygen index (LOI) value of 30.2%. The thermal properties and burning behaviours of cured epoxy resins were investigated by differential scanning calorimeter (DSC), thermogravimetry (TG), LOI, UL-94 tests and cone calorimetry. The morphologies of residues of cured epoxy resins were investigated by scanning electron microscopy (SEM). DSC shows that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA shows that the onset decomposition temperatures and the maximum-rate decomposition temperatures decrease, while char yields increase, with the increase of phosphorus content. The data from the cone calorimeter tests give the evidence that heat release rate (HRR), peak heat release rate (PHRR), average heat release rate (Av-HRR), average mass loss rate (Av-MLR) and the fire growth rate index (FIGRA) decrease significantly for DODPP-EP3/LWPA. SEM shows that the DODPP-EP3/LWPA forms lacunaris and compact charred layers which inhibit the transmission of heat during combustion. 相似文献
7.
A phosphorus-nitrogen reactive flame retardant curing agent poly-(isophorondiamine spirocyclic pentaerythritol bisphosphonate) (PIPSPB) was synthesized. The chemical structure of the obtained compound was identified by FTIR, 1HNMR, and mass spectroscopies. Different proportions of DDS and PIPSPB were compounded as the curing agents to prepare a series of flame retardant epoxy resins with different phosphorus contents. The curing behavior of E-44/PIPSPB?+?DDS system was studied by DSC. A series of tests were conducted to characterize E-44/PIPSPB?+?DDS thermosetting system’s performance. The result demonstrates that the residual carbon content of EP/PIPSPB?+?DDS system is obviously higher than that of EP/DDS system after 500?°C with the increase of phosphorus content in the system, and the heat release rate of the system during combustion is significantly reduced. The generated phosphorus-containing carbon layer is obviously foamed, which shows that the flame retardancy of the system is the result of the combined action of condensed phase and gas phase. When the phosphorus content is 1.77wt%, EP-3 successfully passed UL94 V-0 flammability rating, the LOI value was as high as 29%, the impact strength and tensile strength of it were 6.08KJ/m2 and 49.10MPa respectively, the adhesive strength could reach 13.89?MPa, the system presents a good overall performance. 相似文献
8.
In this study, a previously unreported methodology is attempted to improve the inherent brittleness in diglycidyl ether of bisphenol-A based epoxy resin using hyperbranched polymers as toughening agents. Four different hyperbranched polyesters (HBPs) with increasing generations (1–4, denoted as HBP-G1 to HBP-G4) were synthesized by reacting calculated amount of dipentaerythritol (used as a core) and dimethylol propionic acid (AB2 type monomer) through pseudo one-step melt polycondensation method. The newly synthesized HBPs were characterized using spectral, thermal and physical measurements, which confirmed the formation of highly branched structure and decreasing thermal stability with increasing HBP generations. Further, toughening of the epoxy resin is carried out by reacting each generation of the HBP with epoxy using hexamethylene diisocyanate as an intermediate linkage resulting in the formation of HBP-Polyurethane/Epoxy-g-Interpenetrating Polymer Networks (HBP-PU/EP-g-IPNs). A linear polyol-PU/EP-g-IPN is also synthesized for the purpose of comparison. It is found that the HBP modified epoxy samples exhibited higher toughness in comparison to that of neat epoxy and linear polyol based epoxy samples. On the other hand, flexural properties, thermal stability and glass transition temperature of the modified samples is lower than neat epoxy sample due to the existence of flexible urethane linkages and decrease in the cross-linking density of epoxy matrix. The toughening characteristics exhibited by the HBPs are corroborated from the existence of heterogeneous morphology using SEM data. 相似文献
9.
Dongxian ZhuoAijuan Gu Guozheng Liang Jiang-tao HuLei Cao Li Yuan 《Polymer Degradation and Stability》2011,96(4):505-514
A novel kind of modified bismaleimide/cyanate ester (BCE) resins by copolymerizing with hyperbranched polysiloxane including high content of phenyl (HBPSi) was first reported. The effect of HBPSi on the curing mechanism, and that on the dielectric properties and flame retardancy of cured networks were systemically investigated. Results show that compared with BCE resin, HBPSi/BCE resin has obviously different cross-linked structure, and thus leading to simultaneously improved dielectric properties and flame retardancy. The reactions between HBPSi and the decomposition structure of BCE resin change the thermo-oxidative degradation mechanism of the first step in the thermo-oxidative degradation; in addition, the presence of HBPSi in BCE resin also significantly reduces the mass loss rate (MLR) and increases char yield at 800 °C under an air atmosphere. Therefore, the positive effect of HBPSi on improving the flame retardancy is attributed to the condensed phase mechanism. On the other hand, HBPSi/BCE resins exhibit improved dielectric properties (including decreased dielectric constant and loss) with increasing the content of HBPSi. More importantly, this investigation demonstrates that designing new polysiloxane with suitable chemical structure is important to develop high performance resins with attractive flame retardancy and dielectric properties. 相似文献
10.
Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin 总被引:1,自引:0,他引:1
The focus of this study is an investigation of the effect of oxidation state of phosphorus in phosphorus-based flame retardants on the thermal and flame retardant properties of polyurea and epoxy resin. Three different oxidation states of phosphorus (phosphite, phosphate and phosphine oxide) additives, with different thermal stabilities at a constant phosphorus content (1.5 wt.%) have been utilized. Thermal and flame retardant properties were studied by TGA and cone calorimetry, respectively. The thermal stability of both polymers decreases upon the incorporation of phosphorus flame retardants irrespective of oxidation state and a greater amount of residue was observed in the case of phosphite. Phosphate was found to be better flame retardant in polyurea, whereas phosphite is suitable for epoxy resin. Phosphite will react with epoxy resin by trans-esterification, which is demonstrated by FTIR and 31P NMR. Further, TG–FTIR and XPS studies also provide information on flame retardancy of both polymers with phosphorus flame retardants. 相似文献
11.
A novel hyperbranched polyamine charring agent (HPCA), a derivative of triazines, was synthesized and well characterized by 1H NMR and FTIR. HPCA and ammonium polyphosphate (APP) were added into polylactide (PLA) resin as an intumescent flame retardant (IFR) system to impart flame retardancy and dripping resistance to PLA. The flammability and thermal stability of IFR-PLA composites were investigated by limiting oxygen index (LOI), UL-94 vertical burning, cone calorimetry and thermogravometric analysis (TGA) tests. The results showed that the IFR system had both excellent flame retardant and anti-dripping abilities for PLA. The TGA curves suggested that HPCA has good ability of char formation and when combined with APP, would induce synergistic effect which could be clearly observed. This effect greatly promoted the char formation of IFR-PLA composites, hence improved the flame retardant property. Additionally, the structure and morphology of char residues were studied by XPS, FTIR and SEM. 相似文献
12.
13.
2-(Diphenylphosphinyl)-1,4-benzenediol(DPO-HQ) was synthesized by the reaction of diphenylphos- phine oxide(DPO) with 1,4-benzoquinone(BQ), and characterized by Fourier transform infrared(FTIR), and nuclear magnetic resonance(1H NMR, 13C NMR, 31p NMR) spectrometries. The thermal stability of DPO-HQ was investi- gated by thermogravimetric analysis(TGA). Flame retardant epoxy resin was synthesized based on DPO-HQ. The thermal properties and burning performance of cured epoxy resins were measured by differential scanning calorime- try(DSC), thermogravimetric analysis(TGA), limited oxygen index(LOI) and vertical burning test(UL-94V). The morphologies of cured epoxy resins after combustion were investigated by scanning electron microscopy(SEM) and electron probe microanalysis(EPMA). Moreover, the thermal stability(both in air and in N2) of DPO-HQ and its cured epoxy resin was compared with that of 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- oxide(DOPO-HQ) and its cured epoxy resin. The thermal stability of DPO-HQ is comparable with that of DOPO-HQ, while the thermal stability of cured epoxy resin based on DPO-HQ is better than that based on DOPO-HQ. 相似文献
14.
Synthesis and properties of a phosphorus-containing flame retardant epoxy resin based on bis-phenoxy (3-hydroxy) phenyl phosphine oxide 总被引:1,自引:0,他引:1
A reactive phosphorus-containing compound, bis-phenoxy (3-hydroxy) phenyl phosphine oxide (BPHPPO) was first successfully synthesized to produce the phosphorus-containing flame retardant epoxy resin (BPHPPO-EP). The chemical structures were characterized from FTIR, MS, NMR spectra and elemental analyses. Thermal degradation behaviors and flame retardant properties of the cured epoxy resins were investigated from the thermogravimetric analysis (TGA) and the limiting oxygen index (LOI) test using 4,4′-diaminodiphenylsulfone (DDS) as curing agent. The high char yields and the high limiting oxygen index values were found to certify the great flame retardancy of this phosphorus-containing epoxy resin. 相似文献
15.
YAO Liang DENG Jing QU Bao-jun SHI Wen-fang 《高等学校化学研究》2006,22(1):118-122
IntroductionEpoxy resins are widely used in the fields of coa-tings,adhesives,insulating materials,etc..Diglycidylether of bisphenol A(DGEBA)is the most importantepoxy resin in industry because of its fluidity,physicaland mechanical properties after cure,… 相似文献
16.
Minakshi Sultania 《European Polymer Journal》2010,46(10):2019-2032
Cardanol-based epoxidized novolac vinyl ester resin (CNEVER) was synthesized by reacting cardanol-based epoxidized novolac (CNE) resin and methacrylic acid (MA) (CNE:MA molar ratio 1:0.9) in presence of triphenylphosphine as catalyst at 90 °C. The CNE resin was prepared by the reaction of cardanol-based novolac-type phenolic (CFN) resin and epichlorohydrin, in basic medium, at 120 °C. The CFN resin was synthesized by reacting cardanol (C) and formaldehyde (F) (C/F ratio = 1:0.7) with p-toluene sulphonic acid (PTSA) as catalyst (0.5 wt.%) at 120 °C for 7 h. The resin products were analyzed by Fourier-transform infra-red (FTIR) and nuclear magnetic resonance (NMR) spectroscopic analysis. The number-average molecular weight of the prepared CNEVER was found to be 859 gmol−1 as determined by gel permeation chromatographic (GPC) analysis. The resin was cured by using the mixture of resin, benzoyl peroxide, and styrene at 120 °C. The CNEVER resin was found to be cured in 60 min at 120 °C. Differential scanning calorimetric (DSC) technique was used to investigate the curing behaviour. Single step mass loss in dynamic thermogravimetric (TG) trace of CNEVER was observed. Thermal stability of the vinyl ester sample containing 40 wt.% styrene was the highest amongst all other prepared systems. 相似文献
17.
Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene 总被引:6,自引:0,他引:6
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA. 相似文献
18.
A novel DOPO‐based pyrazine derivative 6‐((2‐hydroxyphenyl)(pyrazin‐2‐ylamino)methyl)dibenzo[c,e][1,2]oxaphosphinine 6‐oxide (DHBAP) was triumphantly synthesized by a two‐step addition reaction using 2‐aminopyrazine, 2‐hydroxybenzaldehyde and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) as reactants, and characterized by Fourier‐transform infrared (FTIR), 31P nuclear magnetic resonance (NMR) and 1H NMR. Afterwards, the addition type flame retardant (DHBAP) was utilized to modify epoxy resin (EP) by blending method. When the content of DHBAP in neat EP was 8 wt%, it reached to the V‐0 rating and the limited oxygen index (LOI) value up to 34.0%. Furthermore, according to the cone calorimeter (CC) test results, the heat release rate (HRR), total heat release (THR), smoke produce rate (SPR) and total smoke production (TSP) of EP/8% DHBAP decreased by 26.3%, 21.3%, 37.0% and 60.9% when compared with neat EP, respectively, indicating that DHBAP had good inhibition on heat and smoke releases. Eventually, the flame‐retardant mechanism of DHBAP was further explored by X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, and pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS). The results showed that DHBAP had good flame‐retardant activity in the gasous‐condensed two phases. 相似文献
19.
Masashi Kaji Takeshi Endo 《Journal of polymer science. Part A, Polymer chemistry》1999,37(16):3063-3069
A new epoxy resin (Bis-ENA) containing naphthalene structure linked with a 1,4-bis(isopropylidene)phenylene was synthesized and was confirmed by elemental analysis, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. To estimate the effect of naphthalene moiety on the cured polymer, an epoxy resin (Bis-EP) having phenyl moiety was synthesized, and curing behaviors of Bis-ENA and Bis-EP with phenol novolac were evaluated by differential scanning calorimetry. The incorporation of naphthalene structure into the resin backbone increased the curing temperature and reduced the curing reactivity. Thermal properties of the cured polymers obtained from Bis-ENA and Bis-EP with phenol novolac were examined by thermomechanical analysis and dynamic mechanical analysis. Mechanical properties and moisture resistance were evaluated by flexural strength, flexural modulus, and moisture absorption measurements. The cured polymer obtained from Bis-ENA showed higher glass transition temperature, higher flexural modulus, lower thermal expansion, and lower moisture absorption than that from Bis-EP. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3063–3069, 1999 相似文献
20.
以生物基糠胺、 酚酞和多聚甲醛为原料, 制备了一种新型生物基苯并噁嗪树脂——酚酞糠胺型苯并噁嗪树脂(PPTL-F-BOZ), 采用FTIR, 1H NMR和 13C NMR等手段对其单体PTL-F-BOZ的结构进行了表征, 并对其固化反应、 耐热和阻燃性能进行分析. 结果表明, 与传统的化石基双酚型苯并噁嗪——双酚A苯胺型苯并噁嗪(BPA-A-BOZ)相比, PTL-F-BOZ显示出较低的固化反应温度, 且糠胺中呋喃环的存在会增加聚合物的交联密度, 并减缓苯氧结构向苯酚结构的重排反应, 致使其在DSC曲线中出现了2个固化峰. PPTL-F-BOZ树脂具有较高的T5%(质量损失5%的温度)和800 ℃的残炭率, 其极限氧指数(LOI)高达36.2%, 在垂直燃烧中达到V-0等级, 表现出优异的热稳定性和阻燃性能. 相似文献