首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Supramolecular Science》1998,5(3-4):349-355
X-ray reflectivity (XR) measurements were carried out for amphiphilic diblock copolymer monolayers on water surface. From XR data, the layer thickness, and surface and interface roughnesses could be determined as a function of surface pressure. The XR experiments were performed using an ‘Air–Water Interface X-ray Reflectometer’ with conventional X-ray source (Cu target) in our laboratory. LB trough was equipped to the reflectometer, so the in situ measurements could be carried out for spread monolayers on water surface at different surface pressures. Kiessig fringes were observed for specular measurement for amphiphilic diblock copolymer, poly(α-methylstyrene)-poly(decyl 4-vinylpyridine) (P(α MSt)-b-P(4VP-C10H21I)) monolayers on water surface. It was observed that the thickness of the monolayer became thicker with increasing surface pressure. By curve fitting for the data obtained for the monolayer at surface pressure of 37 mN m-1, the thicknesses of P(αMSt)50 and P(4VP-C10H21I)50 layers was determined to be 21 and 22 Å, respectively. Because the chain length of P(αMSt)50 is calculated to be 126 Å in all-trans conformation, it was indicated that the molecules did not get aligned even when they were pressedto become such a dense state.  相似文献   

2.
The effect of γ irradiation on a series of vinyl polymers, which included polymethacrylonitrile, poly(α-chloroacrylonitrile), poly(dimethyl itaconate), poly(acrylic anhydride), and poly(methacrylic anhydride), was studied as part of a program to develop improved positive lithographic resists. Radiation-induced degradation was observed for polymethacrylonitrile, poly(α-chloroacrylonitrile), and poly(methacrylic anhydride). Molecular weight degradation as a function of dose was monitored by membrane osmometry or GPC techniques. For γ-irradiated poly(dimethyl itaconate) and poly(acrylic anhydride) crosslinking was found to predominate over chain scission. [G(s)–G(x)] values, calculated from molecular weight inverse versus dose curves, indicate that both nitrile polymers degraded more efficiently than a poly(methyl methacrylate) reference standard on the basis of M n changes. The radiation behavior of the first three polymers confirms earlier findings than vinyl polymers with quaternary carbons predominantly degrade when subjected to ionizing radiation.  相似文献   

3.
The mixed monolayer behavior of stereoregular poly(methyl methacrylate) (PMMA) and poly(vinyl phenol) (PVPh) was investigated from the measurements of surface pressure–area per molecule (πA) isotherms. The πA isotherms indicated that isotactic PMMA (iPMMA) and PVPh were miscible at the air/water interface. The miscibility and non-ideality of the mixed monolayers were examined by calculating the excess area as a function of composition, and negative deviations from ideality were observed, which suggest the existence of attractive interactions between iPMMA and PVPh. However, the πA isotherms of mixed syndiotactic PMMA (sPMMA)/PVPh monolayers showed positive deviation from ideality, which might suggest that non-favorable interactions exist between sPMMA and PVPh.The πA isotherms of mixed atactic PMMA (aPMMA)/PVPh monolayers exhibited complicated excess area behavior. Both positive and negative deviations from ideality were observed at various surface pressures. These isotherm results of mixed polymers correlate approximately well with the miscibility of the corresponding mixtures in the bulk state. The formation of hydrogen bonding between PMMA and PVPh was substantiated in the bulk state by means of Fourier transform infrared (FTIR). Regardless of tacticity, an increase of hydrogen-bonded carbonyl fraction was observed.  相似文献   

4.
A comparative study of spread and adsorbed monolayer of poly(ethylene oxide)s of different molecular weight hydrophobically modified with alkyl isocyanates of different length chain is reported. The modification of the polymer was carried out according to reported procedures. The polymers obtained were studied at the air-water interface by Langmuir isotherms for spread monolayers and by Gibbs isotherms for the adsorption process. Isotherms obtained are interpreted in terms of the hydrophobic and hydrophilic balance of the polymers. Limiting area per repeating unit (A(0)) and collapse pressure (pi(c)) from spread monolayers were obtained. Spread monolayers of the hydrophobically modified polymers show larger collapse pressure values than unmodified polymer monolayers. In the adsorption process the excess surface concentration Gamma(infinity), area per repeat unit sigma, and efficiency of the adsorption were determined. The values of the area occupied per repeat unit in adsorbed monolayer (sigma) were larger than those of the spread monolayer. The efficiency of the adsorption of poly(ethylene oxide)s increases with the hydrophobic modification and with the alkyl chain length.  相似文献   

5.
The degradation kinetics of Langmuir monolayer films of a series of biodegradable polyesters has been studied to investigate the effect of degradation medium, alkalinity and enzymes. The degradation behavior of polyester monolayers strongly depended on both degradation medium and surface pressure. As the surface pressure was increased, the degradation rates of poly(l-lactide) (PLLA) and poly[(R)-3-hydroxybutyrate] (P(3HB)) increased in both degradation media. When monolayers were exposed to an alkaline subphase, the degradation of PLLA monolayers occurred at relatively low surface pressures; the PLLA monolayers were hydrolyzed at pH 10.5 regardless of surface pressure, while the alkaline degradation of P(3HB) monolayer occurred over a constant surface pressure of 7 mN/m at pH 11.8. These results have been explained by the difference in hydrophilic/hydrophobic balance of the polymers; PLLA is more hydrophilic than P(3HB). In contrast, the enzymatic degradations of both polymer monolayers occurred at higher constant surface pressures than those of the alkaline treatment; 7 mN/m for PLLA and 10 mN/m for P(3HB). This behavior was attributed to the enzymes being much larger than the alkaline ions: the enzymes need a larger contact area with the submerged monolayers to be activated.  相似文献   

6.
The dissolution of oxygen in polycrystalline palladium Pd(poly) at an O2 pressure of 100 Pa and temperatures of 500–950 K has been investigated by temperature-programmed desorption. At 500 K, the process yields a surface palladium film that includes an oxide-like reconstructed structure on a rarefied metal surface layer. At this temperature, palladium sorbs ~2 monolayers (ML) of oxygen. At 600–800 K, palladium dissolves up to ~140 ML of oxygen as a result of O2 chemisorption on the surface of the oxide film, penetration of Oads atoms under the oxide film, and their diffusion into the metal bulk. The dependence of the amount of oxygen sorbed by Pd(poly) (n) on the time of exposure to an O2 atmosphere is described by a nearparabolic function, n = atb, indicating that oxygen atoms diffuse in the metal lattice. The activation energy of this diffusion, Е dif, is ~83.5 kJ/mol. At high temperatures (800–950 K), palladium sorbs much less oxygen (≤10 ML). This is due to the complete decomposition of the surface oxide film, a process that markedly hampers the insertion of Oads atoms under the surface layer of the metal.  相似文献   

7.
Two series of ring substituted poly(di-phenyl itaconate)s have been prepared and characterized. The 2-, 3-, and 4-methylphenyl and chlorophenyl derivatives were studied and the glass transition temperatures (Tg) of the 3-substituted polymers were found to be lower than those of the 2- or 4-substituted polymers in each series. Some suggestion of polar effects contributing to Tg was evident in the poly(di-(4-chlorophenyl)itaconate). Dynamic mechanical studies revealed prominent damping peaks in the glassy state of the poly(di(methylphenyl)itaconate)s which can be attributed to methyl group relaxation. The chloro-derivatives showed fewer features, although in the 4-chloro compound there is evidence of restricted ring oscillation in the glass.  相似文献   

8.
The dilatational rheological properties of monolayers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-type block copolymers at the air-water interface have been investigated by employing an oscillating ring trough method. The properties of adsorbed monolayers were compared to spread layers over a range of surface concentrations. The studied polymers were PEO26-PPO39-PEO26 (P85), PEO103-PPO40-PEO103 (F88), and PEO99-PPO65-PEO99 (F127). Thus, two of the polymers have similar PPO block size and two of them have similar PEO block size, which allows us to draw conclusions about the relationship between molecular structure and surface dilatational rheology. The dilatational properties of adsorbed monolayers were investigated as a function of time and bulk solution concentration. The time dependence was found to be rather complex, reflecting structural changes in the layer. When the dilatational modulus measured at different concentrations was replotted as a function of surface pressure, one unique master curve was obtained for each polymer. It was found that the dilatational behavior of spread (Langmuir) and adsorbed (Gibbs) monolayers of the same polymer is close to identical up to surface concentrations of approximately 0.7 mg/m2. At higher coverage, the properties are qualitatively alike with respect to dilatational modulus, although some differences are noticeable. Relaxation processes take place mainly within the interfacial layers by a redistribution of polymer segments. Several conformational transitions were shown to occur as the area per molecule decreased. PEO desorbs significantly from the interface at segmental areas below 20 A(2), while at higher surface coverage, we propose that segments of PPO are forced to leave the interface to form a mixed sublayer in the aqueous region.  相似文献   

9.
A series of poly(itaconate ester)s containing methyl-terminated poly(ethylene oxide) side chains with lengths ranging from 1 to 5 ethylene oxide units has been synthesized. Both heat capacity Cp and dynamic mechanical measurements have been carried out on these polymers using differential scanning calorimetry (DSC) and torsional braid analysis (TBA), respectively. The resulting data for this polymer series are discussed, and comparisons are made with work previously published for the corresponding di-n-alkyl itaconate ester polymers where appropriate.  相似文献   

10.
Soluble fluorine containing poly(amide-imide)s, PAI(1-4), were synthesized from diimide-dicarboxylic acid, 2,2-bis[N-(4-carboxyphenyl)-phthalimide-1,4-yl]hexafluoropropane with various diamines by direct polycondensation in N-methyl-2-pyrrolidone (NMP) containing CaCl2 and using triphenyl phosphite and pyridine as condensing agents. The polymers were readily soluble in aprotic polar solvents such as NMP, N,N-dimethylacetamide, dimethyl sulfoxide and tetrahydrofuran. Their Langmuir monolayers were studied at the air/water interface. The monolayers were generally stable at the water surface and could be reproducibly transferred onto solid substrates to build up Langmuir-Blodgett (LB) multilayers. The LB mono- and multilayers were characterized by ultra-violet/visible spectroscopy (UV-Vis), surface plasmon resonance, atomic force microscopy.  相似文献   

11.
This study investigated the thermodynamic behavior and relaxation processes of mixed DPPC/cholesterol monolayers at the air/water interface at 37°C. Surface pressure–area isotherms and relaxation curves for the mixed monolayers were obtained by using a computer-controlled film balance. In the thermodynamic analysis of the mixed monolayers, the areas of monolayers exhibited negative deviations from the ideal values at all compositions for lower surface pressures. However, at higher surface pressures, distinctively positive deviations from ideality were observed at lower DPPC contents. Excess free energies of mixing had been calculated and the most stable state of the mixed monolayer with xDPPC=0.5 or 0.6 was found. Moreover, the relaxation kinetics of the mixed monolayers was investigated by measuring the surface area as a function of time at a constant surface pressure of 40 mN m−1. It was shown that the relaxation processes could be described by the models considering nucleation and growth mechanisms.  相似文献   

12.
The presence of a main‐chain correlation distance (dII) in the poly(di‐n‐alkyl itaconate)s was confirmed with small‐angle X‐ray scattering/wide‐angle X‐ray scattering measurements taken over the temperature range of 293–478 K. Data for a series of alkyl acrylate polymers were also obtained for comparison. The intensity of the itaconate dII peak was significant and indicated a greater level of nanophase formation than in analogous systems. In the lower members of the series, nanophase formation appeared to be further enhanced in the temperature range above the glass‐transition temperature (Tg). This was ascribed to the rapidly increasing main‐chain mobility in this region. Macroscopically phase‐separated itaconate blends displayed the individual dII nanospacings of each homopolymer component. Copolymers, on the other hand, showed more interesting behavior. Poly(methyl‐co‐di‐n‐butyl itaconate) followed an average behavior in which the dII spacing and Tg changed progressively with the comonomer content. In contrast, the side‐chain pairing in poly(methyl‐co‐di‐n‐octyl itaconate) generated dII spacings characteristic of separate methyl and octyl nanodomains. The observation of the dioctyl nanodomains, along with the dioctyl side‐chain lower Tg relaxation event, confirmed the concept of independent side‐chain‐domain relaxation in these polymers. The temperature behavior of the poly(methyl‐co‐di‐n‐octyl itaconate) small‐angle X‐ray scattering profiles and scattering correlation lengths indicated that the two nanodomains were not completely structurally independent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4000–4016, 2004  相似文献   

13.
 The surface pressure (Π) vs surface concentration (Γs) curves of the hydrogen-bonded polymer blend poly(vinylacetate)+ poly(4-hydro-xystyrene) (PVAc+P4HS) have been measured at 25 °C onto a water subphase at pH=2.0. While PVAc forms extended monolayers, and the free surface of water is found to be a good solvent for it, P4HS forms compressed monolayers, and the surface is a near Θ-type solvent for it. PVAc and P4HS form miscible non-ideal monolayers until near the collapse pressure through the whole concentration range. The composition dependence of the Π–Γs curves is rather complex. Contrary to what might be expected, the addition of PVAc to the blend does not reduce the rigidity of the monolayer until its weight fraction is larger than 0.5. The compressibility data of the P4HS-rich monolayers suggest the existence of a second maximum at high surface coverages, a result already observed in some polysiloxanes. Received: 11 March 1998 Accepted: 7 May 1998  相似文献   

14.
Radical polymerizations of di‐n‐butyl itaconate were investigated. Unexpected resonances (C resonances) were observed in 13C NMR spectra of C?O of poly(di‐n‐butyl itaconate)s [poly(DBI)s] obtained at temperatures higher than 60 °C, although two kinds of carbonyl groups showed splittings due to triad tacticities in the spectra of polymers obtained at lower temperatures. The poly(DBI)s formed by the different kinds of initiators or formed in the presence of chain‐transfer agents showed hardly any changes in the intensities of the C resonances; this indicated that the C resonances were not due to the structures formed through initiating and terminating reactions. The poly(DBI)s obtained at different yields showed only a slight increase in the intensities of the C resonances with the yield, which suggested that the C resonances were not attributable to the intermolecular chain‐transfer reaction to the monomer and/or polymer. However, the intensities of the C resonances significantly increased with a decreasing feed monomer concentration; this suggested that intramolecular chain‐transfer reactions took place at high temperatures. Furthermore, a Cu complex‐catalyzed atom transfer radical polymerization mechanism was revealed to be effective for suppressing the intramolecular chain‐transfer reaction at 60 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2415–2426, 2002  相似文献   

15.
Synthesis, characterization and behavior at the air-water interface of A-B-A triblock copolymers are reported. The copolymers consist of a poly(ethylene oxide) central block and poly(ε-caprolactone) lateral blocks. The synthesis was controlled in order to obtain central and lateral blocks of variable length. Copolymer characterization was performed by FTIR and 1H NMR spectroscopy, size exclusion chromatography (SEC), and thermal analysis. Monolayers of the copolymers at the air-water interface were obtained by the Langmuir technique and the respective isotherms were obtained by monolayer compression. The limiting area per repeat unit (Ao) and the critical exponent of the excluded volume (ν) for spread monolayers were obtained. The static elasticity (ε0) of the monolayers was also determined. The obtained results allow proposing a schematic model of the orientation of the different blocks during the compression of the respective monolayers.  相似文献   

16.
Critical surface tensions γc of poly(vinyl butyral) and poly(vinyl benzal) multilayers built up by the Langmuir-Blodgett method were measured with polyhydric alcohols and n-alkanes. The γc values of both polymer multilayers increased with increasing pressures of the piston oils used to control pressures of polymers on the water surface during deposition. The γc value of poly(vinyl butyral) multilayers built up to lower pressure of the piston oil was approximately consistent with a crystalline hydrocarbon surface, while the γc value of the multilayer built up to higher pressure of the piston oil was approximately consistent with a—CH3 rather than a ? CH2 ? CH2? surface. All results for γc values of poly(vinyl benzal) multilayers were very close to the γc value of benzene ringrich surface. The γc value of the multilayer built up to lower pressure of the piston oil almost coincided with the γc value for amorphous polystyrene, while the γc value for the multilayer built up to higher pressure of the piston oil was in fair agreement with γc for an aromatic ring edge in the crystalline state. Values of γsd, the dispersion force contribution to the surface free energy of multilayers calculated by Fowkes' relation, were in fair agreement with the corresponding observed γc values, respectively. It is concluded from these measurements that orientations and surface structures in both polymer multilayers are affected by pressure change of piston oils. The properties on monolayers of two polymers at a air-water interface and on barium stearate multilayers are also presented.  相似文献   

17.
We have studied the behaviors of a poly(methyl methacrylate) (PMMA) chains anchored to polystyrene particles at air/water and oil/water interfaces to recognize the roles of oil molecules in the PMMA property at the interfaces. Through the comparison of π-A isotherms we found two aspects of unique structural and rheological characteristics observed in PMMA-grafted polystyrene latex (PSL-PMMA) monolayer system in common. (1) The π-A isotherms showed surface pressure increase at larger occupied area compared to the PSL-PMMA size in solution at three different types of interfaces in most cases. (2) Compressional modulus, C s ?1, obtained by π-A isotherm analysis for PSL-PMMA at interfaces, showed the tendency to decrease with molecular weight of PMMA. This is opposite to that of PMMA homopolymer at interfaces. The effect of oil molecules on PSL-PMMA system at interfaces are found both in the difference of occupied area and C s ?1. The occupied areas were larger for the isotherms at the oil/water interfaces than those at the air/water interface in most cases, which suggested the reduced attractive interactions between anchored polymers by oil molecules. On the other hand, C s ?1 of PMMA monolayers is strongly dependent on the constituents of the interface and the order of C s ?1 is air/water?>?decane/water?>?dibutyl ether/water interfaces. The difference between oil species was not explained only by PMMA/oil interaction in bulk, but we suggested that interfacial tension of oil/water interface affects the miscibility of oil molecules with PMMA to cause higher miscibility between PMMA and dibutyl ether at the oil/water interfaces.  相似文献   

18.
The dynamic surface tension of the aqueous solutions of tetraethyleneglycol monooctyl ether (C8E4), a nonionic surfactant, was measured at different concentrations and temperatures. Present data at 298.15 K clearly indicate that the mechanism of adsorption is purely diffusion controlled at low concentrations (0.1~0.4 mmol/kg), and there is a switchover in adsorption mechanism to the mixed diffusion-kinetic control at higher concentrations. The calculated activation energies increase with concentration, and thus, with surface density, but decrease with temperature. The magnitude of activation energy and its increase with surface density suggest that the barrier is due to the free surface site formation by overcoming mainly the attractive van der Waals forces between the chain of adsorbed C8E4 molecules.  相似文献   

19.
The overlapping of charged polymers (e.g., polyelectrolyte) in the liquid phase is one of the key parameters affecting the processing of the macromolecular solutions. This work focused on the development of a novel method for determining the overlap concentration of polyelectrolytes with stirred cell ultrafiltration (UF) techniques. A new, simplified equation that incorporated the resistance-in-series UF model into the osmosis phenomenon caused by polymers was developed, and then applied to estimate the threshold concentration for macromolecular overlap. The overlap concentrations of model polymers, such as poly(dimethylamine-co-epichlorohydrin-co-ethylenediamine) and poly(diallyldimethylammonium chloride), were evaluated with different, initial polymer concentrations and membrane pore sizes. In the correlation between ln Rt/Cr and ln Cr, the concentration where ln Rt/Cr had the minimal value was referred to as the overlap concentration. The gyration radius of polyelectrolytes was calculated using the overlap concentration, which can provide insight into the understanding of the size of polymers and their rejections by membranes. Determining the overlap concentration of polymers with a UF membrane appeared to be viable and practical.  相似文献   

20.
Temperature‐ and pH‐sensitive copolymers and terpolymers of N‐isopropylacrylamide (NIPAAm) with itaconic acid (IA), monomethyl itaconate (MMeI), monobutyl itaconate (MBuI), monooctyl itaconate (MOcI), monocetyl itaconate (MCeI), and dimethyl itaconate (DMI) were prepared by free radical solution polymerization method. The dependence of coil‐to‐globule transition on pH and composition, molecular structures, and reactivities of monoalkyl itaconates, molecular weight distributions, and glass transition temperatures of copolymers and terpolymers were investigated using FT‐IR and UV–visible spectroscopic techniques, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and acid–base titration methods. The temperature‐/pH‐dependent coil‐to‐globule transition measurements showed that, upon increasing the content and length of alkyl chains, the lower critical solution temperatures (LCSTs) were shifted to higher temperatures. This meant that with increase in the length of hydrophobic alkyl chain in the monoitaconates intramolecular intreactions between the carboxyl groups were suppressed and LCSTs increased. The aqueous solution behaviors of NIPAAm/IA/DMI terpolymers also revealed that, even if the terpolymer hydrophobicity is increased by adding DMI units, the presence of IA units overcame the decrease in hydrophilicity of the terpolymers. The presence of DMI units in the terpolymers balanced the hydrophilic character of IA. DSC results supported the ones obtained from the pH‐dependent coil‐to‐globule transition measurements. An increase in both the chain length of alkyl groups attached to the monoitaconates and the contents of the mono‐ and dialkyl itaconates in the copolymers and terpolymers decreased the Tgs. In the case of NIPAAm/IA and NIPAAm/MMeI copolymers, the presence of the carboxyl groups forming hydrogen bonds increased the Tg, while the monoalkyl and dialkyl itaconates such as MBuI, MOcI, MCeI and DMI lead to a decrease in Tg of copolymers and terpolymers because of the suppression of intramolecular interactions (resulting from the ? COOH and ? COO? groups) through the longer alkyl spacers. The dependence of the thermosensitivity of these NIPAAm copolymers and terpolymers on different conditions of pH, and the nature and content of comonomers suggests that they can be useful in biotechnology and drug delivery applications which involve small changes in pH and temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号