首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Temperature-sensitive hybrid microgels with magnetic properties   总被引:4,自引:0,他引:4  
In the present paper, we report the preparation of hybrid temperature-sensitive microgels which include magnetite nanoparticles in their structure. Polymeric microgels have been prepared by surfactant-free emulsion copolymerization of acetoacetoxyethyl methacrylate (AAEM) and N-vinylcaprolactam (VCL) in water with a water-soluble azo-initiator. The obtained microgels possess a low critical solution temperature (LCST) in water solutions, with a rapid decrease of the particle size being observed at elevated temperatures. Magnetite was deposited directly into microgels, leading to the formation of composite particles which combine both temperature-sensitive and magnetic properties. The influence of magnetite load on microgel size, morphology, swelling-deswelling behavior, and stability is discussed.  相似文献   

2.
Poly(N-isopropylacrylamide-acrylamide-phenylboronic acid) [P(NIPAM-AAm-PBA)] microgels of uniform size were prepared by the chemical reaction of 3-aminophenylboronic acid with poly(N-isopropylacrylamide-acrylamide-acrylic acid) [P(NIPAM-AAm-AA)] microgels in aqueous medium in the presence of N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride catalyst via carbodiimide coupling. Silver (Ag) nanoparticles were prepared using seed-mediated growth method and stabilized in P(NIPAM-AAm-PBA)] microgels. Ag nanoparticles and hybrid microgels were characterized by transmission electron microscopy, UV–visible, and dynamic light scattering techniques. The temperature-responsive behavior of hybrid microgels was found to be similar to that of the pure microgels. The value of volume transition temperature of hybrid microgels was found to be slightly higher than that of pure microgels due to shielding effect of Ag nanoparticles present on the surface of microgel particle. The decrease in the size of hybrid microgels as compared to that of pure microgels in swollen state is due to physical cross-linking by Ag nanoparticles inside the network of microgels. The stable hybrid polymer microgel system has a potential to be used for different applications.  相似文献   

3.
In the present study we report a facile and reproducible method of preparing magnetic thermosensitive hybrid material based on P(NIPAM) microgels covered with gamma-Fe2O3 nanoparticles of 6-nm size. The iron oxide nanoparticles provided magnetic response to the microgels. In addition, the presence of the magnetic nanoparticles on the microgels altered their swelling behavior and shifted their volume phase transition temperature to higher values. In particular, for inorganic shells with 18% (w/w) of magnetic nanoparticles the volume phase transition of the microgels was shifted from 36 to 40 degrees C. In contrast, for shells consisting of 38% (w/w) magnetic nanoparticles the volume phase transition of the microgels was almost blocked, thus indicating that the microgel thermal response was strongly affected by the presence of the inorganic nanoparticles. The synthesized thermosensitive magnetic microgels are envisaged to be ideal for potential applications as thermosensitive targeted drug delivery systems.  相似文献   

4.
Monodispersed, hydrophilic, superparamagnetic magnetic nanospheres with a high fraction of magnetite were synthesized by combining modified miniemulsion/emulsion polymerization and sol-gel technique for the first time. The surface of the nanospheres was coated by a silica layer with controlled thickness. Transmission electron microscopy experimental results showed well-proportioned, equal-sized, magnetite/polystyrene (Fe3O4/PS) nanospheres with a thin silica shell. Based on the TGA data, the fraction of magnetite in the Fe3O4/PS nanospheres core was estimated to be 80 wt %. Magnetization measurements indicated that the superparamagnetic nature of the nanospheres had high saturation magnetization of 40 emu/g at 300 K. The procedures of the novel synthesis are described in detail. Also discussed are the mechanisms of the novel combined miniemulsion/emulsion polymerization processes.  相似文献   

5.
以无机粘土(锂蒙脱石)作为物理交联剂,在不加任何乳化剂的条件下,通过无皂乳液聚合制备了一系列粒径在250nm左右且具有温敏性的N-异丙基丙烯酰胺(NIPAM)和丙烯酸叔丁酯(tBA)共聚微凝胶,并通过傅立叶变换红外光谱、扫描电镜、准静态光散射、X射线衍射仪和差示扫描量热法对所合成微凝胶的化学结构、表面形态和温度敏感性进行了表征.研究表明,粘土起到交联剂的作用;tBA的引入可以调节微凝胶的体积相转变温度;所制得的粘土交联微凝胶具有较好的粒径分布且粒径在140nm至350nm之间.  相似文献   

6.
The thermoresponsive behavior of poly-(N-isopropylacrylamide) (PNiPAM) microgels embedded in a covalently cross-linked polyacrylamide hydrogel matrix was investigated using ultraviolet-visible (UV-vis) spectroscopy, small-angle neutron scattering (SANS), and confocal laser scanning microscopy. The hydrogel synthesis was performed at two different temperatures, below and above the volume phase transition temperature of PNiPAM, resulting in highly swollen or fully collapsed PNiPAM microgel particles during the incorporation step. UV-vis spectroscopy experiments verify that the incorporation of thermosensitive microgels leads to temperature-sensitive optical properties of the composite materials. SANS measurements at different temperatures show that the thermosensitive swelling behavior of the PNiPAM microgels is fully retained in the composite material. Volume and structure criteria of the embedded microgel particles are compared to those of the free microgels in acrylamide solution. To visualize the temperature responsive behavior of larger PNiPAM particles, confocal fluorescence microscopy images of PNiPAM beads, of 40-microm size, were taken at two different temperatures. The micrographs also demonstrate the retained temperature sensitivity of the embedded microgels.  相似文献   

7.
Polyurethane (PU) acrylate microgels were obtained by emulsion polymerization of self-emulsified PU acrylate terminated by 2-hydroxyethyl methacrylate without any extra emulsifier and crosslinker. Moreover, the PU acrylate was also used as stabilizer and crosslinker to synthesize poly(methyl methacrylate) (PMMA)–PU composite microgels via emulsion polymerization, which provided a new method to synthesize PU microgels and their composite microgels. The kinetics of microgel synthesis was studied by gel permeation chromatography. The dynamic rheological behaviors indicated that a crosslinked structure was formed. The frequency dependency of the loss tangent and complex viscosities showed strong relationships with the microgel structure. Those microgels with rigid PMMA core showed higher ability to slide than the soft PU acrylate microgel, which had influence on the changing of loss tangent with frequency. All the microgels swollen in tetrahydrofuran exhibited high viscosities and strong shear-thinning behaviors. As a sort of flexible microgel, the PU microgel was able to form a coherent film at room temperature, which was distinct from hard microgels.  相似文献   

8.
We report using poly(acrylamide-co-2-(dimethylamino)ethyl methacrylate, methyl chloride quaternized) cationic microgels as a porous colloidal template for biomimetic in situ silica mineralization, allowing the well-controlled synthesis of submicrometer-sized hybrid microgel--silica particles and porous silica particles by subsequent calcination. The microgels were prepared by inverse emulsion polymerization in the presence of a bisacrylamide cross-linker. Silica deposition was achieved by simply stirring an aqueous mixture of the microgel particles and tetramethyl orthosilicate (TMOS) at 20 degrees C for 30 min. No experimental evidence was found for nontemplated silica, which indicated that silica deposition occurred exclusively within the cationic microgel template particles. The resulting microgel-silica hybrid particles were characterized by electron microscopy, dynamic light scattering, FT-IR spectroscopy, 1H NMR and solid-state 29Si magic angle spinning NMR spectroscopy, thermogravimetry, aqueous electrophoresis, and surface area measurements. Aqueous electrophoresis studies confirmed that the hybrid microgel-silica particles had positive zeta potentials over a wide pH range and isoelectric points could be tuned by varying the synthesis conditions. This suggests that these particles could form complexes with DNA for improved gene delivery. The porosity of the calcined silica particles could be controlled by varying the amount of TMOS, suggesting potential encapsulation/controlled release applications.  相似文献   

9.
We describe the synthesis and properties of functional microgel particles based on poly(N-vinylcaprolactam-co-glycidyl methacrylate) (PVCL/PGMA) copolymer. A series of colloidally stable microgel particles with a range of glycidyl methacrylate content were prepared by surfactant-free heterophase polymerization in water. The microgel particles obtained had hydrodynamic radii between 250 and 350 nm and were fairly monodisperse in size; however, a broadening of the particle size distribution was observed for samples with a low GMA content. The PVCL/PGMA microgel particles exhibit thermally responsive reversible changes in diameter in water, and the swelling degree increased with the PVCL fraction in the copolymer structure. These microgels were then modified with photoluminescent europium-doped lanthanum fluoride nanoparticles (LaF3:Eu-AEP) through reaction of the 2-aminoethyl phosphate surface ligands with epoxy groups present in the microgel. These hybrid microgels were colloidally stable and thermally responsive in aqueous solution.  相似文献   

10.
无机-聚合物纳米复合材料是将聚合物与一种或多种无机纳米粒子复合而成的一种材料,它同时具有无机纳米粒子和聚合物的优良特性,在许多重要技术领域具有广泛的应用前景.近20年来,无机-聚合物纳米复合材料的制备及应用备受关注[1~6].包括杂化微凝胶在内的纳米复合微球是无机-聚合  相似文献   

11.
Hybrid microgels with reversibly changeable multiple brilliant color   总被引:1,自引:0,他引:1  
We report reversibly color changeable hybrid microgels that tune multiple brilliant colors due to interparticle interactions of SPR using several structured nanoparticles. The interparticle interactions were brought out using the thermosensitive swelling/deswelling property of microgel. We employ N-isopropylacrylamide (NIPAM) and glycidyl methacrylate (GMA) copolymerized microgels (NG microgels) as templates for in situ synthesis of Au nanoparticles. The seed Au nanoparticles could be stably grown by successive reduction of Au and Ag in the microgels. Interestingly, the hybrid microgels were able to exhibit multiple brilliant colors by attaching Au/Ag multiple core/shell bimetallic nanoparticles in the microgels, and the color change reversibility of each hybrid microgel was accomplished by adjusting the nanoparticles' sizes. Obtained microgels shown in this study will find important applications such as in biomedical and electronic devices.  相似文献   

12.
By utilizing the hydrolysis and condensation of the methoxysilyl groups, thermo-sensitive organic/inorganic hybrid poly[ N-isopropylacrylamide- co-3-(trimethoxysilyl)propylmethacrylate] [P(NIPAm- co-TMSPMA)] microgels were successfully prepared via two different methods without addition of any surfactant. First, the microgels were obtained by a two-step method; that is, the linear copolymer P(NIPAm- co-TMSPMA) was first synthesized by free radical copolymerization, and the aqueous solution of the copolymer was then heated above its low critical solution temperature (LCST) to give colloid particles, which were subsequently cross-linked via the hydrolysis and condensation of the methoxysilyl groups to form the microgels. Second, the microgels were also prepared via conventional surfactant-free emulsion polymerization (SFEP) of the monomers NIPAm and TMSPMA. TMSPMA can act as the cross-linkable monomer. No surfactant was involved in the preparation of the hybrid microgels. The obtained microgels were rather spherical and exhibited reversible thermo-sensitive behavior. The size, morphology, swellability, and phase transition behavior of the microgels were dependent on the initial copolymer or monomer concentration, preparation temperature, and the content of TMSPMA. The size of microgels obtained by SFEP was found to be more uniform than that by the two-step method. The hybrid microgels obtained by these two methods had more homogeneous microstructures than those prepared via conventional emulsion polymerization with chemical cross-linker N, N'-methylene-bisacrylamide.  相似文献   

13.
Metal nanocrystals incorporated within pH-responsive microgel particles   总被引:1,自引:0,他引:1  
Cross-linked sterically stabilized latexes of approximately 250 nm diameter were synthesized by emulsion polymerization of 2-(diethylamino)ethyl methacrylate using a bifunctional oligo(propylene oxide)-based diacrylate cross-linker and a poly(ethylene oxide)-based macromonomer as the stabilizer at pH 9. These particles exhibit reversible swelling properties in water by adjusting the solution pH. At low pH, they exist as swollen microgels as a result of protonation of the tertiary amine units. Deswelling occurs above pH 7 [the effective pK(a) of poly(2-(diethylamino)ethyl methacrylate)], leading to the formation of the original compact latex particles. The swollen microgels can be used as nanoreactors: efficient impregnation with Pt nanoparticles can be achieved by incorporating precursor platinum compounds, followed by metal reduction. Dynamic light scattering was used to compare two methods of Pt nanoparticle impregnation with respect to the size and stability of the final Pt-loaded microgel particles. In the first method, the H2PtCl6 precursor was added to hydrophobic latex particles at high pH, followed by metal reduction. In the second method, H2PtCl6 was added to hydrophilic swollen microgel particles at low pH, and then this metal salt was reduced in situ using NaBH4 and the pH was raised by the addition of base. Both the Pt salt-loaded (metalated) microgels and the final Pt nanoparticle-loaded microgels had well-defined structures that were independent of the synthesis route. Polymer-metal interactions were investigated by UV-visible absorption spectroscopy, which confirmed that the Pt salt was completely reduced to zero-valent Pt. Transmission electron microscopy and X-ray diffraction studies verified the formation of nanometer-sized Pt nanoparticles within these microgels, which can be used as recoverable colloidal catalyst supports for various organic reactions.  相似文献   

14.
Multiresponsive poly(N-isopropylacrylamide-co-methacrylic acid) microgels were synthesized by precipitation polymerization in aqueous medium. Then silver-poly(N-isopropylacrylamide-co-methacrylic acid) hybrid microgels were prepared by in-situ reduction of silver ions. Formation of microgels was confirmed by Fourier transform infrared spectroscopic analysis. pH and temperature sensitivity of microgel was studied by dynamic light scattering. Hydrodynamic radius of microgels decreases with increase in temperature at pH 8.20 and show volume phase transition temperature around 45°C. At pH 2.65, hydrodynamic radius decreases with increase in temperatures upto 35°C but further increase in temperature causes aggregation and microgel becomes unstable due to increase of hydrophobicity. With increase in pH of medium, the hydrodynamic radius of microgels increases sigmoidally. Formation of silver nanoparticles inside microgel and pH dependence of surface plasmon resonance wavelength of the hybrid microgels were investigated by ultraviolet-visible spectroscopy. The value of surface plasmon resonance band and absorbance associated with surface plasmon resonance band increases with increases in pH of the medium. The apparent rate constant of reduction of p-nitrophenol was found to be linearly dependent on volume of hybrid microgels used as catalyst. The system has a potential to be used as effective catalyst for rapid degradation of industrial pollutant.  相似文献   

15.
The drying mechanism of poly(N-isopropylacrylamide) (pNIPAm) microgel dispersions was investigated. The microgels were synthesized by temperature-programmed aqueous free radical precipitation polymerization using NIPAm, N,N'-methylenebis(acrylamide), and water-soluble initiator. Drying processes of the microgel dispersions were observed with a digital camera and an optical microscope, and the resultant dried structures were observed by scanning electron microscopy. We found that the presence of the microgels changed the behavior of the drying process of water. In particular, the microgels were adsorbed at the air/water interface selectively within a few minutes irrespective of the microgel concentration. The relationship between the drying mechanism and structure of the resultant microgel thin film has been clarified by changing the microgel concentration of the dispersions.  相似文献   

16.
The characterization of temperature- and pH-sensitive poly-N-isopropylacrylamide (poly-NIPAM) microgel particles, produced by surfactant-free emulsion polymerization, has been extensively reported. In the work described here poly(NIPAM) gel particles, cross-linked with N-N'-methylenebisacrylamide (BA), have been produced using inverse suspension polymerization. These particles have been termed "minigels" here since they are somewhat larger than conventional microgels. Results suggest that minigel particles are formed as a dilute suspension, within the aqueous dispersed (droplet) phase. The hydrodynamic diameter of the minigel particles produced in this work is 相似文献   

17.
A novel routine for preparing of glucose-responsive microgels was developed. Following the routine of copolymerizing two functional monomers, a series of microgels with phenylboronic acid dispersed inside were prepared. The thermo-behavior of the microgel was tested, which revealed the retaining property of the thermo-responsive monomer after polymerization. In addition, the glucose-responsive behavior under different temperatures and pH values were also researched. It was demonstrated that the novel microgel was able to response to glucose. Furthermore, it was found that the swelling behavior of the microgel caused by glucose was enhanced, which benefited the drug release of the system.  相似文献   

18.
Here we present the synthesis and characterization of pH responsive polyacrylamide microgels, synthesized via free radical polymerization of acrylamide and bis (acryloylcystamine) (BAC). The gels were made with ultralow amounts of thiol functional groups incorporated into the polymer. The resulting gel monoliths were mechanically chopped into microgel particles with size distributions ranging from 80 to 200 mum. The gels exhibit an interesting reversible pH-dependent rheological behavior which led to gelling of the colloidal suspension when the pH was increased, and a low-viscosity suspension was obtained when the pH was taken back to the original value. The viscosity of the colloidal system containing MBA crosslinked microgels remained insensitive to pH. This observation motivated further analysis; viscosity measurements of the highly viscous (gel-like) state of the BAC crosslinked microgel colloidal suspension were carried out to further understand the rheological behavior of the colloidal system. Electrophoretic mobility measurements as function of pH of the BAC and MBA crosslinked colloidal polyacrylamide microgel suspensions were performed. The swelling behavior of the microgels for both colloidal systems was also determined as function of pH using static light scattering. This swelling behavior was used to rationalize the observed rheological behavior. The work presented here demonstrates that free thiol groups present within a polymer gel matrix confer pH responsive behavior to the gel in solution. The viscosity of a BAC crosslinked microgel suspension was also measured under reducing conditions. The viscosity of the microgel suspension reduced with time, due to the breakage of the disulfide bonds in the crosslinkers.  相似文献   

19.
In this work, we describe a new methodology for the preparation of monodisperse and thermosensitive microgels with magnetic core. In order to produce such a material, hydrophobic magnetic Fe(3)O(4) nanoparticles were prepared by two methods: thermal decomposition and coprecipitation. The surface of these nanoparticles was modified by addition of 3-butenoic acid, and after that these nanoparticles were dispersed in water and submitted to free radical polymerization at 70 °C in the presence of N-isopropylacrylamide (NIPAM) and bisacrylamide. The result of this reaction was monodisperse microgels with a magnetic core. By varying the amount of 3-butenoic acid, it was possible to obtain hybrid microgels with different magnetic core sizes and different architectures.  相似文献   

20.
《Comptes Rendus Chimie》2014,17(2):151-155
In this work, we report a green synthetic method using water-dispersible magnetite nanoparticles containing oleic acid and poly(2-ethyl-2-oxazoline)-poly(ɛ-caprolactone) diblock copolymer as the magnetite nanoparticle dispersants. The Fe3O4 nanoparticles were prepared by co-precipitation and had a bilayer surface with a hydrophobic inner poly(ɛ-caprolactone) (PCL) layer and hydrophilic corona poly(2-ethyl-2-oxazoline) (POX) blocks. Also, the role of the ultrasonicating treatment's duration on the percent of magnetite in the complex and on its magnetic properties was investigated. Transmission electron microscopy (TEM) showed the average particle size to be about 10–20 nm in diameter for nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号