首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) properties of Sr(Y, Gd)2O4 doped with Eu3+ were studied. The excitation spectra of SrY1.9Eu0.1O4 and SrY1.0Gd0.9Eu0.1O4 had absorption in the VUV region with the absorption band edge at 149 nm, while the absorption of SrGd1.9Eu0.1O4 in the VUV region was weak, which could be due to the narrow host band gap and no efficient energy transfer occurred in the VUV region. The PL spectra of all samples exhibited the characteristic emission of Eu3+ with the red 5D0-7F2 transition (611 nm) being the most prominent group.  相似文献   

2.
We have evaluated thermal stability and aging property of a blue color-emitting phosphor, CaAl2Si2O8:Eu2+ (CAS:Eu2+), synthesized by conventional solid-state reaction method. When both CAS:Eu2+ and BaMgAl10O19:Eu2+ (BAM) were baked in air at 500 °C for 20 min, the decrease of photoluminescence (PL) intensity of CAS:Eu2+ was lower than that of BAM. The aging property of CAS:Eu2+ was also better than that of BAM. Due to its rigid structure and unlimited framework of silicon-oxygen and aluminum-oxygen around Eu2+ ions, Eu2+ ions were protected from outer oxidizing atmosphere and plasma discharge. After analysis of aging property and thermal stability, the differences of these thermal stability and aging property of CAS:Eu2+ from those of BAM were ascribed to its crystal structure which plays a role of a shield for Eu2+ ions against oxidation atmosphere and Xe ion bombardment.  相似文献   

3.
Y2O3:Eu3+ phosphor films have been developed by using the sol-gel process. Comprehensive characterization methods such as Photoluminescent (PL) spectroscopy, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were used to characterize the Y2O3:Eu3+ phosphor films. In this experiment, the XRD profiles show that the Y2O3:Eu3+ phosphor films crystallization temperature and optimum annealing temperature occur at about 650 and 750 °C, respectively. The optimum dopant concentration is 12 mol% Eu3+ and the critical transfer distance (Rc) among Eu3+ ions is calculated to be about 0.84 nm. Vacuum environment is more efficient than oxygen and nitrogen to eliminate the OH content and hence yields higher luminescent phosphor films. The PL emission intensity of Y2O3:Eu3+ phosphor films is also dependent on the annealing time. It was found that the H2O impurities were effectively eliminated after annealing time of 25 s at 750 °C in vacuum environment. From the experiment results, the schematic energy band diagram of Y2O3:Eu3+ phosphor films is constructed.  相似文献   

4.
We presented the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 host. The Ce3+-doped CaAl2Si2O8 phosphor had a strong emission band at 378 nm under the vacuum ultraviolet (VUV) light. This emission spectrum of Ce3+ well overlapped with the excitation spectrum of Eu2+ under the UV illumination. As a result, the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 matrix was observed under VUV excitation, which resulted in a significant enhancement of the emission peak intensity at 446 nm. More details about the luminescent properties were presented.  相似文献   

5.
The luminescent properties of an Eu2+-activated hexagonal aluminate, BaMgAl10O17 (BAM), were studied under 147- and 254-nm excitations. The BAM samples were thermally treated by baking and then irradiated in vacuum ultraviolet (VUV) rays. The results show that the emission efficiency of Eu2+ in BAM under 147-nm excitation degraded seriously after baking or VUV-irradiating treatments, while no significant degradation was observed under 254-nm excitation. The degree of degradation depended on the excitation wavelength, and the absorption edge of the BAM host was suggested to be close to 175 nm (7.2 eV). The differences between the thermal-induced and the VUV-irradiation-induced degradations, and their mechanisms are discussed for the color plasma display applications.  相似文献   

6.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D07F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications.  相似文献   

7.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

8.
The blue-emitting CaAl2B2O7:Eu2+ phosphor was prepared at 800 °C by a modified solid-state reaction. The results of X-ray powder diffraction (XRD) analysis confirmed the formation of CaAl2B2O7:Eu2+. Photoluminescence (PL) spectroscopy showed that the phosphor could be excited efficiently by UV-vis light from 250 to 410 nm, and exhibit blue emission (460 nm). The emission intensity of CaAl2B2O7:Eu2+ phosphor varies with the increase of Eu2+concentration. The mechanism of resonance-type energy transfer from Eu2+ to Eu2+ was established to be electric multipole-multipole interaction. TEM images showed that the grain size of CaAl2B2O7:Eu2+ is about 45 nm, which is in full agreement with the theoretical calculation data from the XRD patterns.  相似文献   

9.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

10.
A novel blue light-emitting phosphor, Eu2+-doped magnesium strontium aluminate (MgSrAl10O17:Eu2+), for plasma display panel (PDP) application was developed. X-ray diffraction (XRD) patterns disclosed that the phosphor annealed at 1500 °C for 5 h was a pure MgSrAl10O17 phase. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was less than 3 μm. The phosphor shows strong and broad blue emission under vacuum ultraviolet (VUV) light excitation. After baking at 400-600 °C and irradiation with VUV light for 300 h, the phosphor still keep excellent VUV luminescence properties exhibiting good stability against high temperature baking and VUV irradiation. The decay time was short as 1.09 μs and the quantum yield was high to 0.77±0.02. All the characteristics indicated that MgSrAl10O17:Eu2+ would be a promising blue phosphor for PDP application.  相似文献   

11.
The co-doping of Li+ and Al3+ ions drastically enhances the luminescence of cubic Eu2O3. The integrated emission intensity of 5D07FJ bands (J=1-4) at 580-710 nm increases by a factor of about 6.7 in the co-doped Eu2O3 compared to the un-doped Eu2O3. In order to confirm that the co-doped ions were actually incorporated into the host lattice, the structural characteristics were studied using Raman spectroscopy, XPS, XRD, photoluminescence lifetime, and an SEM. These analyses consistently indicate a certain structural evolution in their results with an increase in the co-doping concentration. Variations in the crystal structure, the crystal morphology, and the intensity variation of the Raman modes at 465 and 483 cm−1 are presented as the evidences showing the incorporation of the co-doped ions into the host. The luminescence enhancement is discussed in terms of concentration quenching, reduction of defect sites, and the modification of the local symmetry of the Eu3+ ions, especially in the inversion symmetry sites.  相似文献   

12.
The monoclinic Ba2ZnSi2O7:Eu2+ blue-green-emitting phosphor and the orthorhombic BaZn2Si2O7:Eu2+ green-emitting phosphor were prepared by combustion-assisted synthesis method as the fluorescent materials for ultraviolet-light-emitting diodes (UV-LEDs) performed as a light source. The crystallinity and luminescence were investigated using X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Pure monoclinic Ba2ZnSi2O7 and orthorhombic BaZn2Si2O7 crystallize completely at 1100 °C. The doped Eu2+ ions did not cause any significant change in the host structure. The emission spectra presented an emission position red shift of up to 16 nm from Ba2ZnSi2O7:Eu2+ to BaZn2Si2O7:Eu2+. The excitation spectra of Ba2ZnSi2O7:Eu2+ and BaZn2Si2O7:Eu2+ were broad-banding, extending from 260 to 465 nm, which match the emission of UV-LEDs.  相似文献   

13.
《Journal of luminescence》2003,65(2-4):127-133
BaMgAl10O17:Eu2+ (BAM) blue phosphor particles with improved photoluminescence (PL) intensity under vacuum ultraviolet (VUV) excitation were prepared by a spray pyrolysis process. In order to improve the PL intensity, Er3+ and Nd3+ ions were used as co-doping elements. The VUV characteristics of BAM:Eu2+, M+ (M=Er, Nd) were monitored with varying the Er3+ and Nd3+ content in order to find the optimal co-doping concentration when they were prepared by spray pyrolysis. It was found that doping Er3+ or Nd3+ enhances the PL intensity of BAM:Eu2+ blue phosphor particles. In particular, the M3+ doping effect on the PL intensity was pronounced when the prepared BAM:Eu2+, M3+ particles were excited by 172 nm VUV. The maximum intensity was obtained when the M3+ content was 1.0 at% with respect to Ba element. The PL intensity of BAM:Eu2+, M+ (M=Er3+, Nd3+) particles was also further improved by producing them in a spherical shape, which was successfully achieved by controlling the spray solution. The optimized BAM:Eu2+, M+ particles had about 10% higher PL intensity than that of the commercial particles, which are made by a conventional solid-state reaction.  相似文献   

14.
Orange-emitting SrS:Eu2+ phosphors were coated with nanoscale SiO2 and their photoluminescence (PL) degradation behavior in moist air was investigated. The SiO2 coating was obtained by sol-gel process using diethoxydimethylsilane (DEDMS) and the coating content was varied from 0.5 to 2 wt%. The coatings were composed of a uniform, continuous, and amorphous SiO2 layer of 30-50 nm thickness and the coating thickness was not varied significantly with the coating content. No peak shift and no decrease of PL intensity were observed after coating. The PL intensity of the coated phosphors decreased to ∼75% of the original value after 10 h exposure to moist air, while the uncoated phosphor decreased to ∼33%, which indicates the improved moisture resistance of the nanoscale SiO2 coated SrS:Eu2+ phosphors.  相似文献   

15.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

16.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

17.
In this work, Eu3+-doped lead borosilicate glasses (SiO2-B2O3-PbO2) synthesized by fusion method had their optical properties investigated as a function of temperature. Atomic Force Microscopy images obtained for a glass matrix annealed at 350 and 500 °C show a precipitated crystalline phase with sizes 11 and 21 nm, respectively. Besides, as the temperature increases from 350 to 300 K a strong Eu3+ photoluminescence (PL) enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from nanocrystals and charged intrinsic defects states to Eu3+ energy levels. In addition, the PL peaks in this temperature range were assigned to the Eu3+ transitions 5D07F2, at 612 nm, 5D07F1, at 595 nm, and 5D07F0, at 585 nm. It was also observed that the 5D07F3 and 5D07F4 PL bands at 655 and 700 nm, respectively, show a continuous decrease in intensity as the temperature increases.  相似文献   

18.
Tin oxide (SnO2)-layers-doped terbium and europium ions are elaborated by the sol-gel method on silicon substrates. After annealing at 500 °C, the transmission electron microscopy revealed a crystallization of tin oxide.The emission properties of rare-earth in SnO2 are studied systematically against temperature annealing and Tb3+ concentration. The PL spectrum is optimal after annealing at 900 °C and the corresponding photoluminescence (PL) decay is nearly exponential, showing that the sample is homogenous and the PL process can be described by two levels system.The concentration effect shows a quenching of the PL intensity for Tb3+ concentration above 4%. From the investigation of the decay rate from the 7F5 state within terbium concentration, we show that self-quenching is insured by dipole - dipole interaction. The evolutions of both PL intensity and PL lifetime versus temperature are studied. The PL intensity and PL lifetime are enhanced by deposing SnO2:Tb3+ and SnO2:Eu3+ in porous silicon. We show that an efficient excitation transfer from Si nanocrystallites to RE ions can occur.  相似文献   

19.
Nanocrystalline Y2Si2O7:Eu phosphor with an average size about 60 nm is easily prepared using silica aerogel as raw material under ultrasonic irradiation and annealing temperature at 300-600 °C and this nanocrystalline decomposes into Y2O3:Eu and silica by heat treatment at 700-900 °C. The excitation broad band centered at 283 and 254 nm results from Eu3+ substituting for Y3+ in Y2Si2O7 and Y2O3/SiO2, respectively. Compared with Y2O3:Eu/SiO2 crystalline, the PL excitation and emission peaks of Y2Si2O7:Eu nanocrystalline red-shift and lead to the enhance of its luminescence intensity due to the different chemical surroundings of Eu3+ in above nanocrystallines. The decrease of PL intensity may be ascribed to quenching effect resulting from more defects in Y2O3:Eu/SiO2 crystalline.  相似文献   

20.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号