首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A novel pulse sequence improving the efficiency for electron capture dissociation (ECD) of an unmodified Fourier transform ion cyclotron resonance (FTICR) mass spectrometer by more than an order of magnitude is presented. Commercially available FTICR instruments are usually equipped with a filament-based electron source producing an electron beam that has a rather small cross section. An ideal overlap between the rotating ion cloud and the electron beam appears to be a prerequisite for a high ECD efficiency. A reduced interception of the ion cloud and the electron beam is probably due to the contribution of the magnetron motion to the trajectory of the ions, resulting in a precession about the z-axis of the instrument. By increasing the kinetic energy and therefore increasing the cyclotron radii of the precursor ions by resonant excitation, the overlap of the rotating ion cloud with the electron beam is improved. By use of this protocol the efficiency of electron capture is substantially increased and consequently the acquisition time of ECD spectra is reduced significantly. The capability of resonant excitation of the precursor ions during the irradiation with electrons is demonstrated for standard peptides. This approach is particularly valuable for analysis and characterization of O-glycosylated peptides. In addition to amino acid sequence information, the attachment site of the labile glycan moiety is determined, and also radical-site-induced fragmentations of the glycosidic bonds are observed.  相似文献   

2.
Successful electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applications to peptide and protein structural analysis have been enabled by constant progress in implementation of improved electron injection techniques. The rate of ECD product ion formation has been increased to match the liquid chromatography and capillary electrophoresis timescales, and ECD has been combined with infrared multiphoton dissociation in a single experimental configuration to provide simultaneous irradiation, fast switching between the two techniques, and good spatial overlap between ion, photon, and electron beams. Here we begin by describing advantages and disadvantages of the various existing electron injection techniques for ECD in FT-ICR MS. We next compare multiple-pass and single-pass ECD to provide better understanding of ECD efficiency at low and high negative cathode potentials. We introduce compressed hollow electron beam injection to optimize the overlap of ion, photon, and electron beams in the ICR ion trap. Finally, to overcome significant outgassing during operation of a powerful thermal cathode, we introduce nonthermal electron emitter-based electron injection. We describe the first results obtained with cold cathode ECD, and demonstrate a general way to obtain low-energy electrons in FT-ICR MS by use of multiple-pass ECD.  相似文献   

3.
Electron capture dissociation (ECD) of polypeptide cations was obtained with pencil and hollow electron beams for both sidekick and gas-assisted dynamic ion trapping (GADT) using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) with an electrostatic ion transfer line. Increasing the number of trapped ions by multiple ICR trap loads using GADT improved the ECD sensitivity in comparison with sidekick ion trapping and ECD efficiency in comparison with single ion trap load by GADT. Furthermore, enhanced sensitivity made it possible to observe ECD in a wide range of electron energies (0-50 eV). The degree, rate and fragmentation characteristics of ECD FTICR-MS were investigated as functions of electron energy, electron irradiation time, electron flux and ion trapping parameters for this broad energy range. The results obtained show that the rate of ECD is higher for more energetic (>1 eV) electrons. Long electron irradiation time with energetic electrons reduces average fragment ion mass and decreases efficiency of formation of c- and z-type ions. The obtained dependencies suggest that the average fragment ion mass and the ECD efficiency are functions of the total fluence of the electron beam (electron energy multiplied by irradiation time). The measured electron energy distributions in low-energy ECD and hot ECD regimes are about 1 eV at full width half maximum in employed experimental configurations.  相似文献   

4.
A new hybrid electrospray quadrupole Fourier transform mass spectrometry (FTMS) instrument design is shown and characterized. This instrument involves coupling an electrospray source and mass-resolving quadrupole, ion accumulation, and collision cell linear ion trap system developed by MDS Sciex with a home-built ion guide and ion cyclotron resonance (ICR) cell. The iterative progression of this design is shown. The final design involves a set of hexapole ion guides to transfer the ions from the accumulation/collision trap through the magnetic field gradient and into the cell. These hexapole ion guides are separated by a thin gate valve and two conduction limits to maintain the required <10(-9) mbar vacuum for FTICR. Low-attomole detection limits for a pure peptide are shown, 220 000 resolving power in broadband mode and 820 000 resolving power in narrow-band mode are demonstrated, and mass accuracy in the <2 ppm range is routinely available provided the signal is abundant, cleanly resolved, and internally calibrated. This instrument design provides high experimental flexibility, allowing Q2 CAD, SORI-CAD, IRMPD, and ECD experiments with selected ion accumulation as well as experiments such as nozzle skimmer dissociation. Initial top-down mass spectrometry experiments on a protein is shown using ECD.  相似文献   

5.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.  相似文献   

6.
Technological advancements including an open-cylindrical Penning trap with capacitively coupled ICR cell, selective ion accumulation with a resolving quadrupole, and a voltage gradient used during ion extraction from an octopole ion trap, have individually improved dynamic range and sensitivity in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Documented here is a new instrument utilizing these technologies toward the robust detection and fragmentation of biomolecules >10 kDa. Up to 55-fold enhancement in ion population by selective ion accumulation combined with 10- to 20- fold signal-to-noise improvement by application of a DC voltage gradient to an accumulation octopole during the ion transfer event offers improved signal-to-noise (or speed) of MS/MS experiments, for proteins from Methanococcus jannaschii and Saccharomyces cerevisiae whole cell lysates. After external quadrupole filtering with a 40 m/z window, three proteins were fragmented (and identified) in parallel from the database of Methanococcus jannaschii. Electron capture dissociation (ECD) of an intact yeast protein provides extensive sequence information resulting in a high degree of localization for an N-terminal acetylation. Hybrid fragmentation, infrared multiphoton dissociation (IRMPD) followed by low energy electrons (ECD), with the electron source located laterally off the z-axis and external to the magnet bore, presents a strategy for identification of proteins by means of the sequence tag approach. Automated implementation of diverse MS(n) approaches in a Q-FTMS instrument promises to help realize "top-down" proteomics in the future.  相似文献   

7.
Electron capture dissociation (ECD) of doubly protonated hyperbranched polyesteramide oligomers (1100-1900 Da) was examined and compared with the structural information obtained by low energy collisionally activated dissociation (CAD). Both the ester and amide bonds of the protonated species were cleaved easily upon ECD with the formation of odd electron (OE(.+)) or even electron (EE(+)) fragment ions. Several mechanistic schemes are proposed that describe the complex ECD fragmentation behavior of the multiply charged oligomers. In contrast to studies of biomolecules, the present results indicate that consecutive cleavages induced by intramolecular H-shifts are significant for ECD and of less importance for low energy CAD. The capture of an electron by the ionized species results in fragmentation associated with a redistribution of the excess internal energy over the products and the subsequent bond cleavage. Low energy, multiple collision CAD is found to be a more selective dissociation method than ECD in view of the observation that only amide bonds are cleaved for most of the hyperbranched polymers examined with CAD in this study. ECD appears not to provide complementary structural information compared to CAD in the study of hyperbranched polymers, even though a significantly more complex ECD fragmentation behavior is observed. ECD is shown to be of use for the structural characterization of large oligomers that may not dissociate upon low energy CAD. This is a direct result of the fact that ECD produces ionized hyperbranched oligomers with a relatively high internal energy.  相似文献   

8.
9.
The adverse influence of the radio frequency (RF) voltage on electrons has been the main obstacle for the implementation of electron capture dissociation (ECD) in three-dimensional quadrupole ion traps (3D QITs). Here we demonstrate that the use of axial magnetic field, together with the injection of low-energy (<5 eV) electrons, in the beginning of the positive RF semi-period achieves trapping of electrons for a period of time comparable with the semi-period duration. Importantly, the energy of the electrons remains low during most of the trapping period. With this technique, which we call "magnetized electrons, in-phase injection" (MEPhI), ECD and other ion-electron reactions have become possible in a 3D QIT. Initial ECD results, including single-scan data, were obtained with dications of Substance P. The observed secondary fragmentation of ECD fragments indicates that the trapped electrons are still somewhat hotter than desired.  相似文献   

10.
A novel set-up for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is reported for simultaneous infrared multiphoton dissociation (IRMPD) and electron-capture dissociation (ECD). An unmodified electron gun ensures complete, on-axis overlap between the electron and the photon beams. The instrumentation, design and implementation of this novel approach are described. In this configuration the IR beam is directed into the ICR cell using a pneumatically actuated mirror inserted into the ion-optical path. Concept validation was made using different combinations of IRMPD and ECD irradiation events on two standard peptides. The ability to perform efficient IRMPD, ECD and especially simultaneous IRMPD and ECD using lower irradiation times is demonstrated. The increase in primary sequence coverage, with the combined IRMPD and ECD set-up, also increases the confidence in peptide and protein assignments.  相似文献   

11.
An ion mobility detector that has been specifically developed for interfacing with capillary gas chromatography is investigated in the negative ion mode. Like the electron capture detector, to which this instrument is closely related, the ion mobility detector shows an enhanced response to low molecular weight halogenated compounds when a small quantity of oxygen is doped into the make-up gas flow. Under O2 doping conditions, the device can operate in a reactant ion monitoring mode responding universally to compounds capable of capturing thermal electrons and in a tunable selective product ion mode providing increased selectivity over that achieved by the ECD. At an oxygen concentration of 0.5%, minimum detectable amounts as low as 600 femtograms have been realized for carbon tetrachloride. Selectivity of chloro- versus bromo- compounds is demonstrated using a mixture of p-dichlorobenzene and p-dibromobenzene.  相似文献   

12.
Implementation of desorption electrospray ionization (DESI) technique on a 9.4 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is described. Desorption electrospray technique is capable of the direct investigation of natural samples without any need for sample preparation or chromatographic separation. Since the DESI mass spectra of natural samples are very complex owing to the lack of preseparation or cleanup, the ideal mass spectrometric analyzer for these applications is a high-resolution instrument such as FTICR mass spectrometer. DESI was implemented by constructing an electronically controlled source framework comprising six linear moving stages and one rotating stage. A three-dimensional linear stage was used to accommodate samples, while another 3D linear stage equipped with rotating stage was used as a spray mount. A modified electrosonic sprayer was used as a primary electrospray device. DESI-FTICR setup was characterized with regard to geometrical, electrical and flow conditions using deposited peptide samples in range of 1-100 pmol gross deposited amount on glass and polymer surfaces. Optimized conditions enabled the routine acquisition of DESI-MS spectra on the instrument at 130 000 resolution in the broadband mode and with comparable sensitivity to data reported in the literature. Since the main significance of DESI-FTICR MS is the combination of intact tissue analysis, the capabilities of the technique were demonstrated by analyzing murine liver samples. Presence of lysophospholipids in the liver tissue was tentatively associated with the lipid metabolism taking place in liver. DESI-FTICR is also a promising technique in the field of peptide analysis due to capability of top-down sequencing using electron capture dissociation. As a proof-of-principle experiment, a small synthetic polypeptide containing 36 amino acids was ionized using DESI and was sequenced in the FTICR by means of ECD (electron capture dissociation) fragmentation. Spectra gave almost full sequence information in agreement with the known amino acid sequence of the species.  相似文献   

13.
We have recently demonstrated that both electron capture dissociation (ECD) and electron detachment dissociation (EDD) can provide complementary sequence-specific cleavage of DNA compared with collision activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD). However, EDD is preferred because of more extensive fragmentation at higher sensitivity (due to its negative ion mode operation). Here, we extend the radical ion chemistry of these two gas-phase ion-electron reaction techniques to the characterization of RNA. Compared with DNA, rather limited information is currently available on the gas-phase fragmentation of RNA. We found that the ECD fragmentation patterns of the oligoribonucleotides A6, C6, and CGGGGC are nucleobase dependent, suggesting that cleavage proceeds following electron capture at the nucleobases. Only limited backbone cleavage was observed in ECD. EDD, on the other hand, provided complete sequence coverage for the RNAs A6, C6, G6, U6, CGGGGC, and GCAUAC. The EDD fragmentation patterns were different from those observed with CAD and IRMPD in that the dominant product ions correspond to d- and w-type ions rather than c- and y-type ions. The minimum differences between oligoribonucleotides suggest that EDD proceeds following direct electron detachment from the phosphate backbone.  相似文献   

14.
Electron capture dissociation (ECD) efficiency has typically been lower than for other dissociation techniques. Here we characterize experimental factors that limit ECD and seek to improve its efficiency. Efficiency of precursor to product ion conversion was measured for a range of peptide (∼15% efficiency) and protein (∼33% efficiency) ions of differing sizes and charge states. Conversion of precursor ions to products depends on electron irradiation period and maximizes at ∼5–30 ms. The optimal irradiation period scales inversely with charge state. We demonstrate that reflection of electrons through the ICR cell is more efficient and robust than a single pass, because electrons can cool to the optimal energy for capture, which allows for a wide range of initial electron energy. Further, efficient ECD with reflected electrons requires only a short (∼500 μs) irradiation period followed by an appropriate delay for cooling and interaction. Reflection of the electron beam results in electrons trapped in or near the ICR cell and thus requires a brief (∼50 μs) purge for successful mass spectral acquisition. Further electron irradiation of refractory precursor ions did not result in further dissociation. Possibly the ion cloud and electron beam are misaligned radially, or the electron beam diameter may be smaller than that of the ion cloud such that remaining precursor ions do not overlap with the electron beam. Several ion manipulation techniques and use of a large, movable dispenser cathode reduce the possibility that misalignment of the ion and electron beams limits ECD efficiency.  相似文献   

15.
Electron capture dissociation of singly and multiply phosphorylated peptides   总被引:12,自引:0,他引:12  
Analysis of phosphotyrosine and phosphoserine containing peptides by nano-electrospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry established electron capture dissociation (ECD) as a viable method for phosphopeptide sequencing. In general, ECD spectra of synthetic and native phosphopeptides appeared less complex than conventional collision activated dissociation (CAD) mass spectra of these species. ECD of multiply protonated phosphopeptide ions generated mainly c- and z(.)-type peptide fragment ion series. No loss of water, phosphate groups or phosphoric acid from intact phosphopeptide ions nor from the c and z(.) fragment ion products was observed in the ECD spectra. ECD enabled complete or near-complete amino acid sequencing of phosphopeptides for the assignment of up to four phosphorylation sites in peptides in the mass range 1400 to 3500 Da. Nano-scale Fe(III)-affinity chromatography combined with nano-electrospray FTMS/ECD facilitated phosphopeptide analysis and amino acid sequencing from crude proteolytic peptide mixtures.  相似文献   

16.
Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO2 laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion.  相似文献   

17.
We present mechanistic studies aimed at improving the understanding of the product ion formation rules in electron capture dissociation (ECD) of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry. In particular, we attempted to quantify the recently reported general correlation of ECD product ion abundance (PIA) with amino acid hydrophobicity. The results obtained on a series of model H-RAAAAXAAAAK-OH peptides confirm a direct correlation of ECD PIA with X amino acid hydrophobicity and polarity. The correlation factor (R) exceeds 0.9 for 12 amino acids (Ile, Val, His, Asn, Asp, Glu, Gln, Ser, Thr, Gly, Cys, and Ala). The deviation of ECD PIA for seven outliers (Pro is not taken into consideration) is explained by their specific radical stabilization properties (Phe, Trp, Tyr, Met, and Leu) and amino acid basicity (Lys, Arg). Phosphorylation of Ser, Thr, and Tyr decreases the efficiency of ECD around phosphorylated residues, as expected. The systematic arrangement of amino acids reported here indicates a possible route toward development of a predictive model for quantitative electron capture/transfer dissociation tandem mass spectrometry, with possible applications in proteomics.  相似文献   

18.
Gangliosides play important biological roles and structural characterization of both the carbohydrate and the lipid moieties is important. The FT-ICR MS/MS techniques of electron capture dissociation (ECD), electron detachment dissociation (EDD), and infrared multiphoton dissociation (IRMPD) provide extensive fragmentation of the protonated and deprotonated GM1 ganglioside. ECD provides extensive structural information, including identification of both halves of the ceramide and cleavage of the acetyl moiety of the N-acetylated sugars. IRMPD provides similar glycan fragmentation but no cleavage of the acetyl moiety. Cleavage between the fatty acid and the long-chain base of the ceramide moiety is seen in negative-ion IRMPD but not in positive-ion IRMPD of GM1. Furthermore, this extent of fragmentation requires a range of laser powers, whereas all information is available from a single ECD experiment. However, stepwise fragmentation by IRMPD may be used to map the relative labilities for a series of cleavages. EDD provides the alternative of electron-induced fragmentation for negative ions with extensive fragmentation, but suffers from low efficiency as well as complication of data analysis by frequent loss of hydrogen atoms. We also show that analysis of MS/MS data for glycolipids is greatly simplified by classification of product ion masses to specific regions of the ganglioside based solely on mass defect graphical analysis.  相似文献   

19.
Described is a system that employs an online membrane introduction (MI) interface coupled with parallel flame ionization and electron capture detectors (FID/ECD). We report the use of a MIFID/ECD system as an online method to detect total volatile organic halides (ΣVOXs) and volatile organic compounds (ΣVOCs) as aggregate parameters in environmental water samples at sub parts-per-billion levels without the need for sample handling or analyte pre-concentration. The instrument provides rapid screening and real-time monitoring capabilities of important classes of water contaminants in a simple system without the vacuum requirements of MS detectors. Furthermore, the MIFID/ECD instrument was successfully employed as a real-time reaction monitor for the photodegradation of toluene by an advanced oxidation process and the formation of volatile disinfection byproducts in the chlorination of natural waters. The results of these experiments compare favorably to those obtained using membrane introduction mass spectrometry (MIMS).  相似文献   

20.
The relative abundances of fragment ions in electron capture dissociation (ECD) are often greatly affected by the secondary and tertiary structures of the precursor ion, and have been used to derive the gas-phase conformations of the protein ions. In this study, it is found that resonance ejection of the charge reduced molecular ion during ECD resulted in significant changes in many fragment ion populations. The ratio of the ion peak intensities in the double resonance (DR)-ECD to that in the normal ECD experiment can be used to calculate the lifetime of the radical intermediates from which these fragments are derived. These lifetimes are often in the ms range, a time sufficiently long to facilitate multiple free radical rearrangements. These ratios correlate with the intramolecular noncovalent interactions in the precursor ion, and can be used to deduce information about the gas-phase conformation of peptide ions. DR-ECD experiments can also provide valuable information on ECD mechanisms, such as the importance of secondary electron capture and the origin of c./z ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号