首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An important fundamental issue in chemically reacting turbulent flows is turbulence/radiation interaction (TRI); TRI arises from highly nonlinear coupling between temperature and composition fluctuations. Here, a photon Monte Carlo method for the solution of the radiative transfer equation has been integrated into a turbulent combustion direct numerical simulation (DNS) code. DNS has been used to investigate TRI in a canonical configuration with systematic variations in optical thickness. The formulation allows for nongray gas properties, scattering, and general boundary treatments, although in this study, attention has been limited to gray radiation properties, no scattering, and black boundaries. Individual contributions to emission and absorption TRI have been isolated and quantified. Of particular interest are intermediate values of optical thickness where, for example, the smallest hydrodynamic and chemical scales are optically thin while the largest turbulence scales approach an optically thick behavior. In the configuration investigated, the temperature self-correlation contribution (emission) is primarily a function of the ratio of burned-gas temperature to unburned-gas temperature, and is the dominant contribution to TRI only in the optically thin limit. Even in the most optically thin case considered, the absorption coefficient–Planck function correlation and absorption coefficient–intensity correlation are not negligible. At intermediate values of optical thickness, contributions from all three correlations are significant.  相似文献   

2.
The Monte Carlo ray-tracing method (MCRT) based on the concept of radiation distribution factor is extended to solve radiative heat transfer problem in turbulent fluctuating media under the optically thin fluctuation approximation. A one-dimensional non-scattering turbulent fluctuating media is considered, in which the mean temperature and absorption coefficient distribution are assumed and the shape of probability density function is given. The distribution of the time-averaged volume radiation heat source is solved by MCRT and direct integration method. It is shown that the results of MCRT based on the concept of radiation distribution factor agree with these of integration solution very well, but results of MCRT based on the concept of radiative transfer coefficient do not agree with these of integration solution. The solution of time-averaged radiative transfer equation by the concept of radiative transfer coefficient should be treated with caution.  相似文献   

3.
The stochastic Eulerian field method is applied to simulate 12 turbulent C1?C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.  相似文献   

4.
This paper presents a heat transfer model to calculate the temperature field in moving glass rods heated by a CO2 laser. Conduction and radiation heat transfer in radial and axial directions are taken into account in the current model. The Rosseland diffusion approximation is incorporated to analyze the radiation heat transfer in the glass rod. A two-band model is used to simulate the spectral property of the glass. Results of the simulation show that glass rods of sufficiently large optical thickness should be treated as a semitransparent medium for radiative transfer, and it is reasonably accurate to assume it to be opaque to CO2 laser irradiation. It has been shown that the resulting temperature profile is strongly dependent on the laser parameters, i.e., the size of laser beam and the power of the laser. The diameter and speed of the moving glass rod are also important in determining the temperature field although the convective heat transfer coefficient between the glass rod and the environment has little effect.  相似文献   

5.
We present in this paper numerical simulations of coupled radiative transfer and turbulent flows at high temperature and pressure, typical of multiphase flows encountered in aluminised solid propellant rocket engines. The radiating medium is constituted of gases and of liquid or solid particles of oxidised aluminum. The turbulent flow of the gaseous phase is treated by using a four equation, low Reynolds number, boundary-layer-type turbulence model. The distributions of concentrations, temperatures, and temperature fluctuation variances of particles are calculated from a Lagrangian approach and a turbulence dispersion model. Thermal and mechanical non-equilibrium between the gas and different classes of particles is allowed. A locally one dimensional, iteratively based, radiative transfer solver is developed to compute wall fluxes and radiative source terms. It is shown that the thermal boundary layer attenuates significantly the radiative fluxes coming from the outer regions. Particle radiation is found to be much more important than gas radiation. Turbulent dispersion of particles in the boundary layer induces a decrease of particle concentration in the region of maximum turbulent kinetic energy, and then, decreases the attenuation effect of wall fluxes due to the boundary layer. The effects of turbulent temperature fluctuations are found to be small in the problem under consideration.  相似文献   

6.
王长顺  潘煦  Urisu Tsuneo 《物理学报》2006,55(11):6163-6167
利用热氧化法在硅晶片上生长SiO2薄膜,结合光刻和磁控溅射技术在SiO2薄膜表面制备接触型钴掩模,通过掩模方法在硅表面开展了同步辐射光激励的表面刻蚀研究,在室温下制备了SiO2薄膜的刻蚀图样.实验结果表明:在同步辐射光照射下,通入SF6气体可以有效地对SiO2薄膜进行各向异性刻蚀,并在一定的气压范围内,刻蚀率随SF6气体浓度的增加而增加,随样品温度的下降而升高;如果在同步辐射光照射下,用SF6和O2的混合气体作为反应气体,刻蚀过程将停止在SiO2/Si界面,即不对硅刻蚀,实现了同步辐射对硅和二氧化硅两种材料的选择性刻蚀;另外,钴表现出强的抗刻蚀能力,是一种理想的同步辐射光掩模材料. 关键词: 同步辐射刻蚀 接触型钴掩模 二氧化硅薄膜  相似文献   

7.
Twenty-five new laser lines have been obtained in the wavelength region from 155 to 830 μm by optically pumping the CD2Cl2 (deuterated dichloromethane) molecule with a CW CO2 laser having a tunability range of 300 MHz. The wavelength, polarization relative to that of CO2 pumping radiation, and offset relative to the CO2 center frequency were determined for all of the new lines and some other already known laser emissions. For all of them we give also the relative intensity and the optimum pressure of operation. Permanent address: Depto de Física e Química da FEIS — UNESP 15.378-000 Ilha Solteira-SP, Brazil  相似文献   

8.
We have studied luminescence properties and microstructure of 20 patterns Si/SiO2 multilayers. The photoluminescence spectra consist of two gaussian bands in the visible-infrared spectral region. It has been demonstrated that the strong PL band is caused by the radiative recombination in the Si/SiO2 interfaces states, whereas the weaker band originates from radiative recombination in the nanosized Si layers. The peak shift of this latter band shows a discontinuity that corresponds to a crystalline-to-amorphous phase change when the Si layers are thinner than 30 Å. The peak energy as a function of the layer thickness is interpreted using a quantum confinement model in the case of amorphous Si layers.  相似文献   

9.
A method for the evaluation of high-pressure discharge temperature profiles is proposed, which is based on a numerical solution of the radiative transfer equation. The measured quantities that have to be provided for the numerical evaluation are readily obtainable because only the absolute side-on intensity of a spectral line as a function of the lateral coordinate has to be measured. The method has been applied to several optically thick mercury lines. A comparison with temperatures obtained from optically thin lines shows good agreement. This method has the following two advantages: (i) temperature determination is possible in cases where no optically thin line is available, (ii) using optically thick lines of transitions with low excited states (e.g., resonance lines), the temperature profile can be determined for larger radii than from optically thin lines.  相似文献   

10.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

11.
Large eddy simulations (LES) are employed to investigate the effect of the inlet turbulence intensity on the H2/CH4 flame structure in a hot and diluted co-flow stream which emulates the (Moderate or Intense Low-oxygen Dilution) MILD combustion regime. In this regard, three fuel inlet turbulence intensity profiles with the values of 4%, 7% and 10% are superimposed on the annular mixing layer. The effects of these changes on the flame structure under the MILD condition are studied for two oxygen concentrations of 3% and 9% (by mass) in the oxidiser stream and three hot co-flow temperatures 1300, 1500 and 1750 K. The turbulence-chemistry interaction of the numerically unresolved scales is modelled using the (Partially Stirred Reactor) PaSR method, where the full mechanism of GRI-2.11 represents the chemical reactions. The influences of the turbulence intensity on the flame structure under the MILD condition are studied by using the profile of temperature, CO and OH mass fractions in both physical and mixture fraction spaces at two downstream locations. Also, the effects of this parameter are investigated by contours of OH, HCO and CH2O radicals in an area near the nozzle exit zone. Results show that increasing the fuel inlet turbulence intensity has a profound effect on the flame structure particularly at low oxygen mass fraction. This increment weakens the combustion zone and results in a decrease in the peak values of the flame temperature and OH and CO mass fractions. Furthermore, increasing the inlet turbulence intensity decreases the flame thickness, and increases the MILD flame instability and diffusion of un-burnt fuel through the flame front. These effects are reduced by increasing the hot co-flow temperature which reinforces the reaction zone.  相似文献   

12.
We find that PL intensity I(t) of SrTiO3 thin film measured under UHV condition increases with UV-laser illumination over long time scale of ∼ 2 h. The intensity increase takes place at lower sample temperature as well, 200, 100 K, and 20 K. When O2 and N2 gas are introduced into the sample chamber the PL intensity decreases with the UV-illumination time, opposite to the UHV-case. We consider a quantitative thermal energy flow model of the laser-power and heat absorption by the sample, but find that temperature change of the sample is not large enough to account for the time dependent I(t). We propose photo-catalysis effect on STO surface as possible scenario of the PL intensity change.  相似文献   

13.
Recent climate studies have proven that both temperature and CO2 content of the earth's atmosphere followed a regular 100,000-year cycle of change and that they are closely correlated. Moreover, the observed increase of CO2 in the atmosphere exceeds the predicted values extrapolated from historical data. Other than industrialization and rapid urbanization, geo-natural hazards such as leakage from hydrocarbon reservoirs and spontaneous combustion of coal contribute a considerable amount of CO2 to the atmosphere. Several researchers have studied the possibilities and reliabilities of atmospheric CO2 retrieval by the point-based method (nearly accurate but much localized) and globally (wider observation but many uncertainties). Radiative transfer codes, such as FASCOD (Fast Atmospheric Signature Code) with the HITRAN (High-Resolution Transmission) spectral database can simulate atmospheric transmission and path radiance with customized gas composition (CO2, water vapour, CO, etc.) and concentration in order to understand the phenomena in a specific wavelength region. In the present study, a number of atmospheric models were constructed with different CO2 concentrations (ppmv) with a combination of water vapour and other atmospheric gases such as CO, CH4, N2O, SO2, etc., to find out the interference patterns of these gases over CO2 absorption bands. The transmission features of these gas combinations were analysed by partial least-squares regression models. These models show that the most suitable CO2 absorption bands are located around 2 μm, such as 1.998 and 2.001 μm. The spectral information derived from different concentrations of CO2 can be fitted in multivariate models to predict the CO2 concentration from spectral information in a controlled environment. Furthermore, the present study explores the sensitivity of some available remote sensing sensors in variable CO2 concentrations for use in real world.  相似文献   

14.
InGaAs/AlGaAs/GaAs pseudomorphic high electron mobility transistor (P-HEMT) structures were grown by Molecular Beam Epitaxy (MBE) on (3 1 1)A GaAs substrates with different well widths, and studied by photoluminescence (PL) spectroscopy as a function of temperature and excitation density.The PL spectra are dominated by one or two spectral bands, corresponding, respectively, to one or two populated electron sub-bands in the InGaAs quantum well. An enhancement of PL intensity at the Fermi level energy (EF) in the high-energy tail of the PL peak is clearly observed and associated with the Fermi edge singularity (FES). This is practically detected at the same energy for all samples, in contrast with energy transitions in the InGaAs channel, which are shifted to lower energy with increasing channel thickness. PL spectra at low temperature and low excitation density are used to optically determine the density of the two-dimensional electron gas (2DEG) in the InGaAs channel for different thicknesses. The results show an enhancement of the 2DEG density when the well width increases, in good agreement with our previous theoretical study.  相似文献   

15.
CS2在当今化工等领域占据了重要地位,而CS2火灾污染事故危害性极大。通过研究CS2燃烧火焰光谱辐射以探究其火灾污染特性极为必要。搭建了CS2燃烧火焰光谱测试平台,采用黑体辐射源对VSR仪器进行了标定,通过多用途傅里叶变换(VSR)红外光谱辐射仪测试了5,10和20 cm三种燃烧尺度下CS2燃烧的火焰光谱,并通过热电偶测试了整个燃烧时间段内不同燃烧时刻下的火焰温度,以及在火焰上方安装了烟气分析仪对火焰中的燃烧产物浓度进行监测。测量了CS2整个燃烧时间段内火焰温度,以及不同燃烧时间、不同燃烧尺度下的火焰光谱、燃烧产物组分信息。测试结果表明,CS2火焰中主要含有高温SO2,CO2,CO气体和空气中卷入的H2O分子,并获取了特征污染产物SO2的浓度。由于现有光谱仪测量分辨率有限,室内实验测量的火焰尺度有限,为了能实现火灾在线监测需要建立一个火焰光谱辐射模型来反演CS2火灾时的污染物浓度相关信息。基于HITRAN数据库可知在2.7 μm附近为高温水蒸气的发射峰,4.2 μm附近特征峰为高温CO2气体的发射峰,4.7 μm附近有CO微弱的发射峰,在7.4 μm附近特征峰为高温SO2气体的发射峰,并获得了CS2燃烧时产生的SO2,CO2,CO和H2O气体在火焰燃烧相同温度下的吸收系数,通过计算得到了CS2燃烧时产生的SO2,CO2,CO和H2O混合气体的透过率与发射率,并结合气体辐射传输方程、气体吸收系数等方程,创建了CS2燃烧的火焰光谱辐射模型。利用该光谱辐射模型反演了不同燃烧时间下特征污染产物SO2的浓度,并与实验测得的数据进行了对比分析。结果表明,该模型精度高,可用于燃烧产物浓度的定量化反演,SO2分子含量在燃烧时间20,40,60和80 s时的反演精度分别是89.5%,82.5%,85.6%和86.5%。为遥感反演CS2型大尺度火灾中燃烧产物的浓度奠定基础。  相似文献   

16.
We have measured absorption of emission from a TEA CO2 laser, lasing on hot band lines, in pure CS2 and a mixture of CS2 with air, and we have determined the optimal lines for optical excitation. Numerical modeling has shown that as the peak intensity of the pump radiation is increased, we observe absorption saturation, the extent of which decreases as the pressure increases. The major factor responsible for absorption saturation is the “rotational bottleneck” effect. Depending on the peak intensity of the radiation, addition of a buffer gas can lead to an increase or decrease in the absorption. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 1, pp. 61–66, January–February, 2007.  相似文献   

17.
A low-pressure DC plasma discharge sustained in a 1.6%Ar–2.7%N2–95.3%CO2 ternary mixture is studied. This plasma was generated in a total pressure range from 1.0 to 4.0 Torr, a power of 6.3 W and a 12 l/min flow rate of gases. The electron temperature was found to be 8.41 eV and the ion density, in the order of 109 cm−3. The species observed in the plasma mixture were CO2, CO2+, CN, CO, CO+, O2, O2+, N2, N2+, NO, C+, Ar and Ar+. At the pressure range in the present study, the species observed do not change their intensity due to an increase in the pressure and they separate in two groups according to their emission intensity: the band of the first group (CO2, CO2+ and CN) is approximately a factor of 3 more intense than that of the second group (CO, CO+, O2, O2+, N2, N2+, NO, C+, Ar and Ar+). The behavior of the emission intensities may be correlated to the constant ion density and electron temperature measured. Also, we observed the same constant behavior in the ratios of the neutral and positive species intensities to that of the N2 intensity, as a function of pressure. This may suggest that the different rate coefficients and cross sections of elastic collision, excitation and de-excitation of electronic or vibrational levels, inelastic and superelastic collisions of electrons with the gas phase and products, neutral–neutral interactions, resonant charged transfer processes, recombination, to mention some, to produce these species change in the same proportion, as a function of the pressure to keep the relative ratios of the species almost constant.  相似文献   

18.
Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5 nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2 (probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.  相似文献   

19.
We solve the problem of diffraction of fluctuating radiation by an optically thin irregular layer (phase screen) with developed turbulent structure. It is shown that in the case of diffraction of radiation with saturated fluctuations and a narrow-band frequency spectrum by a weakly turbulent moving phase screen, the measured frequency spectrum of intensity fluctuations in the observation plane allows one to obtain information on the form of the spectrum of irregularities of an optically thin irregular layer in a wide size range significantly exceeding the size of the first Fresnel zone. Similarly to the well-known phase method of diagnostics of randomly irregular media, the conventional scintillation method modified in such a way yields undistorted information on the form of the irregularity spectrum. However, in contrast to the phase method, it also allows one to obtain data on the drift velocity of irregularities in the studied irregular layer.  相似文献   

20.
ABSTRACT

CO2 gas hydrate technology seems to be a gentle way to concentrate juices, especially comparing to evaporation processes which achieve high levels of concentration and is furthermore energetically favorable in contrast to freeze concentration processes. CO2 can form gas hydrates at around 30–80 bar and 274–283 K. For evaluating this new technology, it is not only important to know the phase equilibrium lines of commercial juices like apple and orange juices but also how the application of e.g. a bubble column affects the gas hydrate formation and separation from the concentrated product. In order to support the experimental outcome, numerical modeling seems suitable to understand the physical background of this novel concentration technology. This includes the simulation of temperature, velocity, pressure and concentration fields using finite volume technique. All three work packages combined will lead to a better understanding of the behavior of gas hydrate technology used to concentrate liquid food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号