首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Eight phenolic compounds, obtained by in vitro fermentation of quercetin, quercetin-3-glucoside and quercetin-3-rhamnoglucoside were analysed by electrospray ionisation mass spectrometry (ESI-MS). Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) was performed on the [M - H]- precursor ions to obtain specific fragmentation. Typical fragmentation of the phenolic acids was loss of 44 (CO2) and 18 (H2O) u. Production of m/z 108 by loss of neutral radicals, e.g. HCO2, CH3 or HCO, was also favoured. Structures of the compounds, numbered 1-8, were suggested based on the fragmentation patterns.  相似文献   

2.
Glycosphingolipids with R(f) values higher than those of monoglycosylceramides (MGCs) in normal phase HPTLC appear to be normal components of myelin. A series of such low polarity components, referred to as 'fast moving cerebrosides' (FMCs), have been isolated from rat brain, and two of these fractions (FMC-1 and FMC-2) were found to be novel derivatives of galactosylceramide (GalCer) exhibiting O-acetylation at the 3-hydroxy group of the sphingoid moiety, and incorporating either non-hydroxy or 2-hydroxy fatty-N-acylation (Dasgupta S, Levery SB, Hogan EL. J. Lipid Res. 2002; 43: 751-761). Similar to the parent compounds, the 3-O-acetyl-sphingoid derivatives exhibit considerable diversity with respect to fatty-N-acyl chain length, manifested by heterogeneous molecular ion (Li(+) adduct) profiles. However, a detailed analysis of the individual molecular variants ('lipoforms'), e.g. by tandem MS/CID-MS analysis, was not carried out. In addition, several other FMCs distinguished by even lower polarity (higher HPTLC R(f) values) were isolated but have remained uncharacterized. For this study, analysis of both the known and unknown FMC components was carried out by positive ion ESI-MS and MS/CID-MS of their Li(+) adducts on a Q-TOF mass spectrometer. Since a Q-TOF instrument has not yet been applied to MS of lithiated cerebrosides and FMCs, MS/CID-MS spectra of bovine brain GalCer (both types) and the previously characterized rat brain FMCs (FMC-1 and FMC-2), having 3-O-acetylation of the sphingoid, were systematically acquired and their fragmentation behavior compared. This was followed by systematic analysis of previously uncharacterized FMC fractions (FMC-3 through FMC-5/6/7). The GalCer and FMC components proved to be amenable to analysis by this technique, and the data confirm that the latter are all related 3-O-acetyl-sphingoid derivatives, with the higher R(f) components carrying additional O-acetyl modifications on the galactosyl residue, which further reduce their polarity. The utility of the technique, the structures of unknown FMCs, and their characteristic fragmentation patterns are described.  相似文献   

3.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

4.
The fragmentation patterns of a series of three novel synthesized 3-hydroxy-4-phenyl-tetrahydro-1,5-benzodiazepin-2-ones (1-3), possessing the same backbone structure, were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) techniques. A simple methodology, based on the use of ESI (positive ion mode) and by increasing the declustering potential in the atmospheric pressure/vacuum interface, collision-induced dissociation (CID), was used to enhance the formation of the fragment ions. In general, the novel synthetic 1,5-benzodiazepine derivatives afforded, in the gas phase, both protonated and sodiated molecules. This led to the confirmation of the molecular masses and chemical structures of the studied compounds. Exact accurate masses were measured using a high-resolution ESI-quadrupole orthogonal time-of-flight (QqToF)-MS/MS hybrid mass spectrometer instrument.The breakdown routes of the protonated molecules were rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole-hexapole-quadrupole (QhQ) tandem mass spectrometer. All the observed major fragmentations for the 1,5-benzodiazepines occurred in the saturated seven-membered ring containing the nitrogen atoms. These formed a multitude of product ions by different breakdown routes. All the major fragmentations involved cleavages of the N-1-C-2 and C-3-C-4 bonds. These occurred with concomitant eliminations of glyoxal, benzene and ethyl formate, forming the product ion at m/z 119, which was observed in all the studied compounds. In addition, an unique simultaneous CID-MS/MS fragmentation was noticed for the 1,5-benzodiazepines 1 and 3, which occurred by a pathway dictated by the substituent located on the N-1-position. It was evident that the aromatic ring portion of the 1,5-benzodiazepines was resistant to CID-MS/MS fragmentation. Re-confirmation of the various geneses of the product ions was achieved by conducting a series of precursor ion scans. ESI-MS and CID-MS/MS analyses have thus proven to be a specific and very sensitive method for the structural identification of these novel 1,5-benzodiazepine derivatives.  相似文献   

5.
ESI and CID mass spectra were obtained for two purine nucleoside antiviral agents (acycloguanosine and vidarabine) and one purine nucleotide (vidarabine monophosphate) and the corresponding compounds in which the labile hydrogens were replaced by deuterium gas phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M+H](+) and [M -H](-) ions and the exchanged analogs, [M(Dx)+D](+) and [M(Dx)-D](-), produced by ESI using a Sciex API-IIIplus mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the CID mass spectra of the undeuterated and deuterated species. Protonated purine antiviral agents dissociate through rearrangement decompositions of base-protonated [M+H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the same bonds with charge retention on the sugar moiety gives low abundance ions, due to the low proton affinity of the sugar moiety compared to that of purine base. CID of protonated purine bases [B+H](+) occurs through two major pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). Deprotonated acycloguanosine and vidarabine exhibit the deprotonated base [B-H](-) as a major fragment from glycosidic bond cleavage and charge delocalization on the base. Deprotonated vidarabine monophosphate, however, shows predominantly phosphate related product ions. CID of deprotonated guanine shows two principal pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). The dissociation reactions of deprotonated adenine, however, proceed by elimination of HCN and (2) elimination of NCHNH (NCHND). The mass spectra of the antiviral agents studied in this paper may be useful in predicting reaction pathways in other heteroaromatic ring decompositions of nucleosides and nucleotides.  相似文献   

6.
Analysis of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (anandamide) via alkali or alkaline earth metal-adduct high-energy collision-induced dissociation (CID) in fast-atom bombardment (FAB) ionization-mass spectrometry (MS) is described. The CID-MS/MS of the [2-AG+Li](+) or [2-AG+Na](+) ion undergoes charge-remote fragmentation (CRF), which is useful for the determination of the double-bond positions in the hydrocarbon chain, while the CID-MS/MS of the [2-AG-H+Cat](+) (Cat = Mg(2+), Ca(2+), Ba(2+)) ion provides an abundant fragment ion of the cationized arachidonic acid species, which is derived from cleaving the ester bond via a McLafferty-type rearrangement in addition to structurally informative CRF ions in small amounts. On the other hand, the CID-MS/MS spectra of anandamide cationized with both alkali metal (Li(+) or Na(+)) and alkaline earth metal (Mg(2+), Ca(2+), or Ba(2+)) show CRF patterns: the spectra obtained in lithium or sodium adduct are more clearly visible than those in magnesium, calcium, or barium adduct. The McLafferty rearrangement is not observed with metal-adduct anandamide. The characteristics in each mass spectrum are useful for the detection of these endogenous ligands. m-Nitrobenzyl alcohol (m-NBA) is the most suitable matrix. A lithium-adduct [2-AG+Li](+) or [anandamide+Li](+) ion is observed to be the most abundant in each mass spectrum, since the affinity of lithium for m-NBA is lower than that for other matrices examined.  相似文献   

7.
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) using a hybrid QqToF-MS/MS instrument has aided the structural characterization and differentiation of a novel series of medicinal synthetic 1-N-glycoside-quinoxalinone derivatives. These derivatives 7 and 8 are formed by an amino bond between the cyclic N-1 of the quinoxaline moiety and the C-6 position of a fully protected methyl or allyl alpha-D-mannofuranoside 3 and 4, and subsequent deprotection of the mannopyranoside moiety. In general the novel synthetic quinoxaline derivatives afforded the protonated molecules in ESI. The breakdown routes of the protonated molecules were rationalized by conducting low-energy CID-MS/MS analyses. In addition, re-confirmation of the various established fragmentation routes was achieved by conducting a series of ESI-CID-QqTof-MS/MS product ion scans on various selected precursor ions, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. ESI-QqToF-MS/MS analysis has proven to be a specific and very sensitive method for the structural identification in the gas phase of these novel glycoquinoxalinamine derivatives.  相似文献   

8.
The fragmentation of heterocyclic amines (HAs) in an ion trap was studied by means of the infusion of methanolic solutions containing the compounds under assay, and using an atmospheric pressure chemical ionization (APCI) as ion source. The MS(n) spectra obtained for compounds included in the same family, either aminoimidazoazaarenes (AIAs) or carbolines, were compared in order to propose fragmentation pathways for each HA. Moreover, labelled AIAs were used to establish the mechanisms. The protonated molecule was always obtained, but subsequent fragmentation was different for both families. In the case of AIAs, major product ions came from the fragmentation of the aminoimidazole moiety, thus the base peak in MS(2) corresponded to the loss of the methyl group, and losses of C(2)NH(3) and CN(2)H(2) were also observed. Further fragmentation occurred in the heterocyclic rings, mainly with losses of HCN and CH(3)CN. For carbolines, the most important product ions came from the loss of ammonia, except for harman and norharman, the loss of a methyl group for methylated carbolines or the loss of diverse fragments from the heterocyclic rings. In some cases, ion-molecule reactions into the ion trap were observed. For instance, for AalphaC or MeAalphaC one ion originating from these reactions corresponded to the base peak.  相似文献   

9.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

10.
A potent and selective sulfonamide beta3 agonist with an excellent pharmacokinetic profile has recently been synthesized. During the analysis by liquid chromatography/tandem mass spectrometry (LC/MS/MS) of metabolites of the sulfonamide N-[4-[2-(2-hydroxy-2-pyridin-3-ylethylamino)ethyl]phenyl]-4-[4-(4-trifluoromethylphenyl)thiazol-2-yl]benzulfonamide (compound A), we observed loss of 64 Da for a few of the metabolites in the negative ion mode. Accurate mass measurements performed with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and quadrupole time-of-flight (Q-TOF) mass spectrometry suggested that the loss of 64 Da corresponded to the loss of SO(2). The same phenomenon was observed for a group of structurally related and commercially available compounds that also contain a sulfonamide moiety. MS/MS analysis of the fragment ions that had lost SO(2) in the ion source suggested that these ions were covalently bound rather than ion-molecule complexes. The neutral loss involving the cleavage of two bonds was unanticipated and suggested a complex rearrangement process. A mechanism for the loss of SO(2) has been proposed.  相似文献   

11.
A series of lysophosphatidylcholines were isolated from the marine sponge Spirastrella abata by reversed-phase high performance liquid chromatography (HPLC) and analyzed by fast atom bombardment mass spectrometry (FAB-MS). Their structural elucidation was carried out with fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecular ions produced diverse product ions via a series of dissociative processes. Because of the positive charge of the amine group at the end of the molecules, charge-remote fragmentation patterns of specific ions, [M + H](+) or [M + Na](+), were very helpful for the identification of product ions which are characteristic for choline and long hydrocarbon chains substituted at the glycerol back bone. Moreover, the CID-MS/MS spectra of sodium adducted molecular ions for lysophosphatidylcholines yielded common characteristic fragment ions for the choline moiety and characteristic ions [M + Na-103](+), [M + Na-85](+) and [M + Na-59](+) in the higher mass region.  相似文献   

12.
The fragmentation mechanism of simvastatin and lovastatin was investigated using both triple quadrupole and ion trap mass spectrometers. The elimination of the ester side-chain followed by dehydration and dissociation of the lactone moiety were observed as the main fragmentation pathways for both compounds. Another major fragmentation process was a C==C double-bond facilitated rearrangement. Our tandem mass spectrometric (MS/MS) data suggested that the beta-hydroxy group was involved in the fragmentation by interacting with the carboxyl group generated from the ring opening of the lactone. As a result, a facile neutral loss of 60 Da (CH(3)COOH or a combination of CH(2)==C==O and H(2)O) was detected. MS/MS studies of the structural analogs also provided evidence that the dehydration of the beta-hydroxy lactone generated preferentially the beta,gamma-unsaturated lactones.  相似文献   

13.
The mass spectra of 19 aromatic isocyanides are reported and discussed. The main feature of the fragmentation of these compounds is loss of HCN usually indicated by a metastable peak. Although this process is characteristic of the behaviour of aromatic isocyanides the extent to which it dominates the mass spectrum of any aromatic isocyanide is determined by the relative ease of cleavage of other bonds within the molecule. 2,4,6-d3-phenylisocyanide (Ib) loses predominantly DCN from the molecular ion while 2,4-d2-1-naphthylisocyanide (lIIb) eliminates HCN. It is therefore concluded that the loss of HCN from aromatic isocyanides is mainly a non-random process (no randomization prior to fragmentation).  相似文献   

14.
We evaluated the composition of Swertia herbs using high performance liquid chromatography-diode array detector-mass spectrometry (HPLC-DAD-MS). Eleven peaks of 6 species were unequivocally identified by comparing their retention times, UV spectra, on-line electrospray ionization mass (ESI-MS) spectra, and collision-induced dissociation mass spectrometry/mass spectrometry (CID-MS/MS) data with those of authentic compounds. We adopted wavelengths of 254 nm, 340 nm and 230 nm to simultaneously determine these 11 compounds. By comparing the overall DAD and total ion current (TIC) profiles of various samples, the 6 species were differentiated in terms of the occurrence and/or relative concentrations of the eleven compounds. Our novel validated HPLC-DAD-MS method not only facilitates quality control and identification of Swertia herbs, but is also applicable to systematic investigations of the distribution of secoiridoids, flavonoids, and xanthones in the genus Swertia.  相似文献   

15.
This paper reports the use of a quadrupole time-of-flight (Q-TOF) mass spectrometer fitted with a matrix-assisted laser desorption/ionization (MALDI) ion source for the analysis of neutral and acidic glycosphingolipids. All compounds gave strong [M + Na]+ ions with 2,5-dihydroxybenzoic acid as the matrix, with no loss of sensitivity with increasing mass as was observed from the corresponding ions produced by electrospray. Neutral glycosphingolipids showed negligible in-source fragmentation but sialylated compounds fragmented by loss of sialic acid. However, these losses were not accompanied by unfocused post-source-decay ions as observed with MALDI-reflectron-TOF instruments. The MS/MS spectra were almost identical to those obtained by electrospray. Fragmentation of all compounds was mainly by glycosidic cleavage to give ions, both with and without the ceramide moiety, which defined the carbohydrate chain sequence. Weak ions which defined the sphingosine chain length and abundant ions, produced by loss of the acyl chain, were present when this chain contained a 2-hydroxy group. The technique was applied to the identification of ceramide-trihexosides present in tissues from mice genetically modified to model one of the glycolipid storage diseases (Fabry disease).  相似文献   

16.
Beta-nitroalkenyl meso-tetraphenylporphyrins [beta-TPPCHC(NO(2))R)], as free-bases and Zn(II) complexes, were studied by electrospray mass spectrometry (ESI-MS). Under this ionisation condition the [M + H](+) ions are formed. The fragmentation pattern of the resulting [M + H](+) ions were studied by electrospray tandem mass spectrometry (ESI-MS/MS). The ESI-MS/MS of beta- nitroalkenylporphyrins, either as free-bases or as Zn(II) complexes, show several interesting features, distinct from the typical behaviour of nitro compounds. For the studied compounds, common main fragmentation patterns are observed, namely characteristic losses of NO(2), HNO(2), 2OH, RNO(2), RCNO, RCNO(2), RCH(2)NO(2), C(6)H(5) plus NO(2) and the formation of the protonated macrocycle, [TPP + H](+) or [ZnTPP + H](+). However, depending on the presence or absence of the metal and the nature of the R substituent, important differences are observed on the relative abundances of the ions formed by the same fragmentation pathway. The presence of bromine in the alkenyl group leads to a peculiar behaviour, since the main fragmentation pattern corresponds to the combined elimination of the bromine atom with the typical nitro group fragments. When R = Br, the loss of the nitro group occurs in low relative abundance (11-16%). However, when R = CH(3), the relative abundance of the ion due to the loss of HNO(2) changes drastically from 100%, observed for the free-base porphyrin, to 29% in the case of the Zn(II) complex. These variations of the relative abundance of the fragment corresponding to the loss of the nitro moiety (typically considered as a diagnostic fragment) can induce to an erroneous interpretation of their MS/MS spectra. Some fragmentations are observed only for the free-base porphyrins, namely the loss of CH(NO(2)R and HNO(2) plus C(2)H(2), while the loss of OH, H(2)O, OH plus H(2)O and RCCH plus H(2)O is observed only for the complexes. Unusual and unexpected fragmentations are also observed, namely the losses of RCNO, RCNO(2) and HNO(2) plus C(2)H(2). This work demonstrates that valuable structural information about the beta-nitroalkenyl substituents linked to meso- tetraarylporphyrins can be achieved using MS/MS. These results can also be useful for the interpretation of the mass spectra of other nitroalkenyl substituted compounds.  相似文献   

17.
Three cyclitol derivatives were isolated from the marine sponge Sarcotragus sp. by reversed-phase high-performance liquid chromatography and analyzed by fast-atom bombardment mass spectrometry (FAB-MS). Their structural elucidation was carried out with FAB tandem mass spectrometry (FAB-MS/MS). FAB-MS spectra produced a significant abundance of the sodium adducts [M+Na]+ and [M+2Na-H]+ from a mixture of m-NBA and NaI. In addition, trifluoroacetylation of the cyclitol derivatives was used for confirmation of the presence of the cyclitol ring. High abundance [M-5H+5CF3CO+Na]+ ions were observed in the FAB-MS spectra of the trifluoroacetyl-cyclitol derivatives. Collision-induced dissociation (CID) of the [M+Na]+ ions produced diverse product ions via a series of dissociative processes. Charge-remote fragmentation (CRF) patterns of [M+Na]+ ions were very useful for the identification of product ions which are characteristic for the cyclitol ring and long hydrocarbon chains substituted at the glycerol backbone. Moreover, the CID-MS/MS spectra of the [M+Na]+ ions yielded characteristic product ions at m/z 53, 83, 113, 155 and 171 for the cyclitol moiety, and at m/z 213, 229 and 245 for the glycerol backbone attached to the cyclitol ring.  相似文献   

18.
Liu W  Kong Y  Zu Y  Fu Y  Luo M  Zhang L  Li J 《Journal of chromatography. A》2010,1217(28):4723-4731
A novel method using liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS) has been optimized and established for the qualitative and quantitative analysis of ten active phenolic compounds originating from the pigeon pea leaves and a medicinal product thereof (Tongluo Shenggu capsules). In the present study, the chromatographic separation was achieved by means of a HiQ Sil C18V reversed-phase column with a mobile phase consisting of methanol and 0.1% formic acid aqueous solution. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using the selected reaction monitoring (SRM) analysis was employed for the detection of ten analytes which included six flavonoids, two isoflavonoids and two stilbenes. All calibration curves showed excellent coefficients of determination (r(2) ≥ 0.9937) within the range of tested concentrations. The intra- and inter-day variations were below 5.36% in terms of relative standard deviation (RSD). The recoveries were 95.08-104.98% with RSDs of 2.06-4.26% for spiked samples of pigeon pea leaves. The method developed was a rapid, efficient and accurate LC-MS/MS method for the detection of phenolic compounds, which can be applied for quality control of pigeon pea leaves and related medicinal products.  相似文献   

19.
Fungal cerebrosides (monohexosylceramides, or CMHs) exhibit a number of ceramide structural modifications not found in mammalian glycosphingolipids, which present additional challenges for their complete characterization. The use of Li+ cationization, in conjunction with electrospray ionization mass spectrometry and low energy collision-induced dissociation tandem mass spectrometry (ESI-MS/CID-MS), was found to be particularly effective for detailed structural analysis of complex fungal CMHs, especially minor components present in mixtures at extremely low abundance. A substantial increase in both sensitivity and fragmentation was observed on collision-induced dissociation of [M + Li]+ versus [M + Na]+ of the same CMH components analyzed under similar conditions. The effects of particular modifications on fragmentation were first systematically evaluated by analysis of a wide variety of standard CMHs expressing progressively more functionalized ceramides. These included bovine brain galactocerebrosides with non-hydroxy and 2-hydroxy fatty N-acylation; a plant glucocerebroside having (E/Z)-delta8 in addition to (E)-delta4 unsaturation of the sphingoid base; and a pair of fungal cerebrosides known to be further modified by a branching 9-methyl group on the sphingoid moiety, and to have a 2-hydroxy fatty N-acyl moiety either fully saturated or (E)-delta3 unsaturated. The method was then applied to characterization of both major and minor components in CMH fractions from a non-pathogenic mycelial fungus, Aspergillus niger; and from pathogenic strains of Candida albicans (yeast form); three Cryptococcus spp. (all yeast forms); and Paracoccidioides brasiliensis (both yeast and mycelium forms). The major components of all species examined differed primarily (and widely) in the level of 2-hydroxy fatty N-acyl delta3 unsaturation, but among the minor components a significant degree of additional structural diversity was observed, based on differences in sphingoid or N-acyl chain length, as well as on the presence or absence of the sphingoid delta8 unsaturation or 9-methyl group. Some variants were isobaric, and were not uniformly present in all species, affirming the need for MS/CID-MS analysis for full characterization of all components in a fungal CMH fraction. The diversity in ceramide distribution observed may reflect significant species-specific differences among fungi with respect to cerebroside biosynthesis and function.  相似文献   

20.
Natural 2H‐chromenes were isolated from the crude extract of Piper aduncum (Piperaceae) and analyzed by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) applying collision‐induced dissociation. Density functional theory (DFT) calculations were used to explain the preferred protonation sites of the 2H‐chromenes based on thermochemical parameters, including atomic charges, proton affinity, and gas‐phase basicity. After identifying the nucleophilic sites, the pathways were proposed to justify the formation of the diagnostic ions under ESI‐MS/MS conditions. The calculated relative energy for each pathway was in good agreement with the energy‐resolved plot obtained from ESI‐MS/MS data. Moreover, the 2H‐chromene underwent proton attachment on the prenyl moiety via a six‐membered transition state. This behavior resulted in the formation of a diagnostic ion due to 2‐methylpropene loss. These studies provide novel insights into gas‐phase dissociation for natural benzopyran compounds, indicating how reactivity is correlated to the intrinsic acid‐base equilibrium and structural aspects, including the substitution pattern on the aromatic moiety. Therefore, these results can be applied in the identification of benzopyran derivatives in a variety of biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号