首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel actuator signal achieved by changing the ratio of the suction duty cycle to the blowing duty cycle is adopted to enhance the control effect of the synthetic jet for the flow around a circular cylinder. The suction duty cycle factor k defined as the ratio between the time duration of the suction cycle and the blowing cycle and the equivalent momentum coefficient Cμ are introduced as the determining parameters. The synthetic jet is positioned at the rear stagnation point in order to introduce symmetric perturbations upon the flow field. The proper orthogonal decomposition (POD) technique is applied for the analysis of the spanwise vorticity field. Increasing the suction duty cycle factor, the momentum coefficient is enhanced, and thus a stronger and larger scale synthetic jet vortex pair with a higher convection velocity is generated. The synthetic jet vortex pair interacts with the spanwise vorticity shear layers behind both sides of the cylinder, resulting in the variations of the wake vortex shedding modes at Re=950: for k=0.25, Cμ=0.148, vortex synchronization at the subharmonic excitation frequency with antisymmetric shedding mode; for 0.50≤k≤1.00, 0.213≤Cμ≤0.378, vortex synchronization at the excitation frequency with the symmetric or antisymmetric shedding modes; for 2.00≤k≤4.00, 0.850≤Cμ≤2.362, vortex synchronization at the excitation frequency with symmetric shedding mode. Hence, the control effect of the synthetic jet upon the wake vortex of a circular cylinder can be enhanced by increasing the suction duty cycle factor so as to increase the momentum coefficient. This is also validated at a higher Reynolds number Re=1600.  相似文献   

2.
Modification to the flow field about a finite-span cylinder of low-aspect ratio (AR = 3) by a single synthetic jet, mounted normal to the cylinder axis, was studied experimentally using surface-mounted pressure taps, stereoscopic particle image velocimetry (SPIV), and constant-temperature anemometry. The synthetic jet altered the circulation about the cylinder and created a large spanwise change to the surface pressure, much greater than the dimensions of its orifice. SPIV measurements in the near wake showed that the synthetic jet enhances mixing of the downwash from the cylinder free end with the wake deficit, vectoring and narrowing the wake. The synthetic jet penetrates through the streamwise vorticity, enhancing mixing within the wake and reducing the power associated with the shedding frequency, St = 0.155, except below the vortex dislocation, where the shedding frequency was increased to that corresponding to a quasi-two-dimensional cylinder, St = 0.22.  相似文献   

3.
This paper reports an experimental investigation of the vortex shedding wake behind a long flat plate inclined at a small angle of attack to a main flow stream. Detailed velocity fields are obtained with particle-image velocimetry (PIV) at successive phases in a vortex shedding cycle at three angles of attack, α=20°, 25° and 30°, at a Reynolds number Re≈5,300. Coherent patterns and dynamics of the vortices in the wake are revealed by the phase-averaged PIV vectors and derived turbulent properties. A vortex street pattern comprising a train of leading edge vortices alternating with a train of trailing edge vortices is found in the wake. The trailing edge vortex is shed directly from the sharp trailing edge while there are evidences that the formation and shedding of the leading edge vortex involve a more complicated mechanism. The leading edge vortex seems to be shed into the wake from an axial location near the trailing edge. After shedding, the vortices are convected downstream in the wake with a convection speed roughly equal to 0.8 the free-stream velocity. On reaching the same axial location, the trailing edge vortex, as compared to the leading edge vortex, is found to possess a higher peak vorticity level at its centre and induce more intense fluid circulation and Reynolds stresses production around it. It is found that the results at the three angles of attack can be collapsed into similar trends by using the projected plate width as the characteristic length of the flow.  相似文献   

4.
The effect of feedback control on vortex shedding from two tandem cylinders in cross-flow is investigated experimentally. The objective is to reduce the downstream cylinder response to vortex shedding and turbulence excitations. Feedback control is applied to a resonant case, where the frequency of vortex shedding coincides with the resonance frequency of the downstream cylinder, and to a nonresonant case, in which the shedding frequency is about 30% higher than the downstream cylinder resonance frequency. A “synthetic jet” issuing through a narrow slit on the upstream cylinder is employed to impart the control effect to the flow. The effect of open-loop control, using pure tones and white noise to activate the synthetic jet, is also examined. It is demonstrated that feedback control can significantly reduce the downstream cylinder response to both vortex shedding and turbulence excitations. For example, the cylinder response is reduced by up to 70% in the resonant case and 75% in the nonresonant case. Open-loop control also can reduce the cylinder response, but is less effective than feedback control. The frequency of vortex shedding is found to increase substantially when white noise is applied. This increase in the shedding frequency is higher than the largest frequency shift that could be produced by open-loop tone excitation.  相似文献   

5.
In the present experimental study the effect of a control disc mounted at the rear of an axisymmetric blunt-based body of revolution, first studied by Mair, is investigated in the Reynolds number range 3×103ReD≤5×104 . As the distance of the control disc from the blunt base is increased, four vortex shedding regimes are identified: at small distances there is no effect, then a sharp increase of vortex shedding activity and total drag is observed, followed by an interval with reduced activity and drag and finally at large distances a regime where the flow around the main body and disc become essentially independent, i.e. where the drag forces of the two elements become additive. The near and far wake velocity fields corresponding to the different regimes are documented with time- and phase-averaged hot-wire and LDA measurements, with spectral analysis of the data and with flow visualizations of the near wake. The results are used to develop an improved understanding of the instability mechanism leading to high vortex shedding activity.  相似文献   

6.
The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height square prism was investigated experimentally in a low-speed wind tunnel. Measurements of the mean drag force and vortex shedding frequency were made at Re=7.4×104 for square prisms of aspect ratios AR=9, 7, 5 and 3. Measurements of the mean wake velocity field were made with a seven-hole pressure probe at Re=3.7×104 for square prisms of AR=9 and 5. The relative thickness of the boundary layer on the ground plane was δ/D=1.5–1.6 (where D is the side length of the prism). The splitter plates were mounted vertically from the ground plane on the wake centreline, with a negligible gap between the leading edge of the plate and rear of the prism. The splitter plate heights were always the same as the heights of prisms, while the splitter plate lengths ranged from L/D=1 to 7. Compared to previously published results for an “infinite” square prism, a splitter plate is less effective at drag reduction, but more effective at vortex shedding suppression, when used with a finite-height square prism. Significant reduction in drag was realized only for short prisms (of AR≤5) when long splitter plates (of L/D≥5) were used. In contrast, a splitter plate of length L/D=3 was sufficient to suppress vortex shedding for all aspect ratios tested. Compared to previous results for finite-height circular cylinders, finite-height square prisms typically need longer splitter plates for vortex shedding suppression. The effect of the splitter plate on the mean wake was to narrow the wake width close to the ground plane, stretch and weaken the streamwise vortex structures, and increase the lateral entrainment of ambient fluid towards the wake centreline. The splitter plate has little effect on the mean downwash. Long splitter plates resulted in the formation of additional streamwise vortex structures in the upper part of the wake.  相似文献   

7.
8.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

9.
In this paper, enhancement of mixing between two water streams of the same flow rate in a planar channel by means of a lateral synthetic jet pair is studied at a net flow Reynolds number of 83 using PLIF and PIV. The synthetic jet pair is operated 180° out-of-phase at a range of actuation frequencies and displacements, with the latter being characterized by the dimensionless stroke length. The extent of mixing is evaluated using PLIF data at a location further downstream in the mixing channel. It is found that at a fixed actuation frequency a higher dimensionless stroke length produces a better mixing, and as the actuation frequency increases a lower dimensionless stroke length is required to achieve a given mixing degree. At a sufficiently high frequency or dimensionless stroke length, a nearly homogenous mixing with a mixing degree greater than 0.9 can be obtained. A functional relationship between actuation frequency and dimensionless stroke length is also obtained by best fitting the experimental data, which can be used for selecting the synthetic jet operating conditions to ensure a good mixing. Furthermore, both PLIF and PIV results show that each synthetic jet actuation cycle produce two opposing vortex pairs, which play an important role in prompting mixing between the two fluid streams. The excellent mixing obtained at a high frequency or a high dimensionless stroke length is found to be largely caused by a strong interaction between these opposing vortex pairs.  相似文献   

10.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

11.
Toward getting the vortex dynamics characteristics and wake structure of a sphere in proximity to a wall, the effect of a proximal flat plate on the wake of a stationary sphere is investigated via direct numerical simulation. The vortex shedding process and the significant variation of the wake structure are described in detail. The drag coefficient reduces and the wake structure of the sphere becomes complex due to the combined effect of the wake flow and the wall. A jet flow forms between the sphere and the flat plate, which suppresses the vortex separation on the bottom of the sphere. The asymmetric distributions of the coherent structures and the recirculation region behind the sphere are discussed. Besides vortex shedding patterns, the time-averaged velocity distribution, vortex dynamics, distribution regularities of turbulent kinetic energy and enstrophy are investigated.  相似文献   

12.
The influence of a wake-mounted splitter plate on the flow around a surface-mounted circular cylinder of finite height was investigated experimentally using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re=7.4×104 for cylinder aspect ratios of AR=9, 7, 5 and 3. The thickness of the boundary layer on the ground plane relative to the cylinder diameter was δ/D=1.5. The splitter plates were mounted on the wake centreline with negligible gap between the base of the cylinder and the leading edge of the plate. The lengths of the splitter plates, relative to the cylinder diameter, ranged from L/D=1 to 7, and the plate height was always equal to the cylinder height. Measurements of the mean drag force coefficient were obtained with a force balance, and measurements of the vortex shedding frequency were obtained with a single-component hot-wire probe situated in the wake of the cylinder–plate combination. Compared to the well-studied case involving an infinite circular cylinder, the splitter plate was found to be a less effective drag-reduction device for finite circular cylinders. Significant reduction in the mean drag coefficient was realized only for the finite circular cylinder of AR=9 with intermediate-length splitter plates of L/D=1–3. The mean drag coefficients of the other cylinders were almost unchanged. In terms of its effect on vortex shedding, a splitter plate of sufficient length was able to suppress Kármán vortex shedding for all of the finite circular cylinders tested. For AR=9, vortex shedding suppression occurred for L/D≥5, which is similar to the case of the infinite circular cylinder. For the smaller-aspect-ratio cylinders, however, the splitter plate was more effective than what occurs for the infinite circular cylinder: for AR=3, vortex shedding suppression occurred for all of the splitter plates tested (L/D≥1); for AR=5 and 7, vortex shedding suppression occurred for L/D≥1.5.  相似文献   

13.
Cavitating turbulent flow around hydrofoils was simulated using the Partially-Averaged Navier–Stokes (PANS) method and a mass transfer cavitation model with the maximum density ratio (ρl/ρv,clip) effect between the liquid and the vapor. The predicted cavity length and thickness of stable cavities as well as the pressure distribution along the suction surface of a NACA66(MOD) hydrofoil compare well with experimental data when using the actual maximum density ratio (ρl/ρv,clip = 43391) at room temperature. The unsteady cavitation patterns and their evolution around a Delft twisted hydrofoil were then simulated. The numerical results indicate that the cavity volume fluctuates dramatically as the cavitating flow develops with cavity growth, destabilization, and collapse. The predicted three dimensional cavity structures due to the variation of attack angle in the span-wise direction and the shedding cycle as well as its frequency agree fairly well with experimental observations. The distinct side-lobes of the attached cavity and the shedding U-shaped horse-shoe vortex are well captured. Furthermore, it is shown that the shedding horse-shoe vortex includes a primary U-shaped vapor cloud and two secondary U-shaped vapor clouds originating from the primary shedding at the cavity center and the secondary shedding at both cavity sides. The primary shedding is related to the collision of a radially-diverging re-entrant jet and the attached cavity surface, while the secondary shedding is due to the collision of side-entrant jets and the radially-diverging re-entrant jet. The local flow fields show that the interaction between the circulating flow and the shedding vapor cloud may be the main mechanism producing the cavitating horse-shoe vortex. Two side views described by iso-surfaces of the vapor volume fraction for a 10% vapor volume, and a non-dimensional Q-criterion equal to 200 are used to illustrate the formation, roll-up and transport of the shedding horse-shoe vortex. The predicted height of the shedding horse-shoe vortex increases as the vortex moves downstream. It is shown that the shape of the horse-shoe vortex for the non-dimensional Q-criterion is more complicated than that of the 10% vapor fraction iso-surface and is more consistent with the experiments. Further, though the time-averaged lift coefficient predicted by the PANS calculation is about 12% lower than the experimental value, it is better than other predictions based on RANS solvers.  相似文献   

14.
An experimental study based on Particle Image Velocimetry (PIV) is presented with the objective of studying the flow regimes that appear in the flow past a confined prism undergoing self-sustained oscillations at low Reynolds numbers (Re). The square-section prism, placed inside a 3D square cross-section vertical channel with a confinement ratio of 1/2.5, was tethered to the channel walls and, therefore, it was allowed to move freely transverse to the incoming flow. Re (based on the prism cross-section height) was varied in the range from 100 to 700. Three different prism to fluid density ratios (m1) were considered: 0.56, 0.70, and 0.91. These two parameters, Re and m1, were used to map the results obtained. In particular, it was found that five different regimes appear: (1) steady prism with steady recirculation bubble, (2) steady prism with unsteady vortex shedding wake, (3) large amplitude low frequency oscillating prism with unsteady vortex shedding wake, (4) small amplitude high frequency oscillating prism with unsteady vortex shedding wake, and (5) irregular/chaotic motion of both the prism and the wake. The PIV results and associated numerical simulations were used to analyze the different prism and wake states.  相似文献   

15.
This paper reports simulation results for free‐stream flow past an oscillating square cylinder at Re=100 and 150, for oscillating‐to‐natural‐shedding frequency ratios of 0.5?fr?3.0 at a fixed oscillation amplitude of 0.2 of the cylinder width. The transformed governing equations are solved in a non‐inertial frame of reference using the finite volume technique. The ‘lock‐in’ phenomena, where the vortex shedding becomes one with the oscillation frequency, is observed near the natural shedding frequency (fr≈1). Beyond the synchronization band, downstream recovery of the wake to its stationary (natural) state (frequency) is observed in cross‐stream velocity spectra. At higher forcing frequencies, a phase lag between the immediate and the far wake results in a shear layer having multi‐polar vortices. A ‘Vortex‐switch’ accompanied by a change in the direction of energy transfer is identified at the ‘lock‐in’ boundaries. The variation of aerodynamic forces is noticed to be different in the lock‐in regime. The velocity phase portrait in the far wake revealed a chaotic state of flow at higher excitation though a single (natural) frequency appears in the spectra. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The vortex formation and shedding process in the near wake region of a 2D square-section cylinder at incidence has been investigated by means of particle image velocimetry (PIV). Proper orthogonal decomposition (POD) is used to characterize the coherent large-scale flow unsteadiness that is associated with the wake vortex shedding process. A particular application of the POD analysis is to extract the vortex-shedding phase of individual velocity fields, which were acquired at asynchronous low rate with respect to the vortex shedding cycle. The phase of an individual flow field is determined from its projection on the first pair of POD modes, allowing phase averaging of the measurement data to be performed. In addition, a low-order representation of the flow, constructed from the mean and the first pair of POD modes, is found to be practically equivalent to the phase-averaged results. It is shown that this low-order representation corresponds to the basic Fourier component of the flow field ensemble with respect to the reconstructed phase. The phase-averaged flow representations reveal the dominant flow features of the vortex-shedding process and the effect of the angle of incidence upon it.  相似文献   

17.
The wake characteristics of unconfined flows over triangular prisms of different aspect ratios have been numerically analysed in the present work. For this purpose, a fixed Cartesian-grid based numerical technique that involves the porous medium approach to mimic the effect of solid blockage has been utilised. Correspondingly, laminar flow simulations ranging from the sub-critical regime (before the onset of vortex shedding) to the super-critical regime have been considered here within the limits of two-dimensionality. In the sub-critical regime, correlations relating the wake bubble length with Reynolds number (Re) have been proposed for various aspect ratios. Also, the effects of aspect ratio and Reynolds Number on the drag force coefficient (CD) have been characterised for two different geometrical orientations of the prism (base or apex facing the flow). Subsequently, the critical Reynolds number at the onset of vortex shedding has been predicted for each of the aspect ratio considered, by an extrapolation procedure. The unsteady flow characteristics of the super-critical regime are finally highlighted for different aspect ratios and triangular orientations considered in the study.  相似文献   

18.
The flow behavior in the up- and downstream regions of a square cylinder subject to the modulation of a planar jet issued from the cylinder׳s front surface was studied using the laser-assisted smoke flow visualization method and hot-wire anemometer measurement. Reynolds numbers were from 1628 to 13 000. The drag force experienced by the square cylinder was obtained by measuring the surface pressures on the up- and downstream faces. The temporally evolving smoke flow patterns in the up- and downstream regions were synchronously revealed through the smoke flow visualization. The frequency characteristics of the instability waves in the up- and downstream regions were synchronously detected by the two hot-wire anemometers. Four characteristic flow modes were observed within the different ranges of the injection ratios. At the low injection ratios (IR<1), the ‘swinging jet’ appeared. The jet swung periodically leftward and rightward and formed a fluid bubble on the front surface. The fluid bubble contained a pair of counter-rotating vortices and presented a periodic variation in its height. At moderately low injection ratios (1<IR<4.3), the ‘deflected oscillating jet’ appeared. The jet was deflected in either the left or the right direction and wrapped around one of the edges of the square cylinder. Both the swinging and oscillating motions of the jet in the swinging jet and deflected oscillating jet modes were induced by the periodic feedback pressure signals generated by the vortex shedding in the wake. At the moderately high (4.3<IR<8.3) and high (IR>8.3) injection ratios, the ‘deflection jet’ and ‘penetrating jet’ appeared. The jet detached from the cylinder׳s front surface and penetrated a long distance into the upstream region due to large jet momentum. Neither periodic jet oscillation in the upstream region nor vortex shedding in the wake was observed. The drag coefficient was found to be decreasing quickly with increasing the injection ratio.  相似文献   

19.
We report experimental results of the forced wake of a thin symmetric flat plate, placed parallel to an uniform air stream, in the range of thickness-based Reynolds number 50< Re e <200. External wake forcing was introduced by small harmonic oscillations of a moving flap, placed at the trailing-edge of the flat plate. When the flap remains in a fixed horizontal position, the mean velocity profiles obtained by hot wire measurements, for different Reynolds numbers, are self similar. In the presence of harmonic forcing, within a certain range of the forcing frequency, the mean velocity profiles change and coherent structures are formed in the wake. Two independent flow-type resonances were observed: (i) when the inverse of the forcing frequency matches the flight time of the fluid particles along the flap. (ii) when the forcing frequency of the flap equals one half of the vortex shedding frequency of the flat plate and flap system. Implications of the two observed resonances on the wake structure are important. The first resonance (i) is associated to a wide but less intense (energy fluctuations) wake flow and the second resonance (ii) generates a thin but intense resultant wake flow.  相似文献   

20.
The near-wake behind a circular cylinder undergoing rotational oscillatory motion with a relatively high forcing frequency has been investigated experimentally. Experiments were carried out varying the ratio of the forcing frequency ff to the natural vortex shedding frequency fn in the range of 0.0 (stationary) to 1.6 at an oscillation amplitude of θA=30° and Reynolds number of Re=4.14×103. Depending on the frequency ratio (FR=ff /fn), the near-wake flow could be divided into three regimes—non-lock-on (FR=0.4), transition (FR=0.8, 1.6) and lock-on (FR=1.0) regimes—with markedly different flow structures. When the frequency ratio was less than 1.0 (FR⩽1.0), the rotational oscillatory motion of the cylinder decreased the length of the vortex formation region and enhanced the mutual interaction between large-scale vortices across the wake centerline. The entrainment of ambient fluid seemed to play an important role in controlling the near-wake flow and shear-layer instability. In addition, strong vortex motion was observed throughout the near-wake region. The flow characteristics changed markedly beyond the lock-on flow regime (FR=1.0) due to the high frequency forcing. At FR=1.6, the high frequency forcing decreased the size of the large-scale vortices by suppressing the lateral extent of the wake. In addition, the interactions between the vortices shed from both sides of the cylinder were not so strong at this forcing frequency. As a consequence, the flow entrainment and momentum transfer into the wake center region were reduced. The turbulent kinetic energy was large in the region near the edge of the recirculation region, where the vortices shed from both sides of the cylinder cross the wake centerline for all frequency ratios except for the case of FR=1.6. The temporally resolved quantitative flow information extracted in the present work is useful for understanding the effects of open-loop active flow control on the near-wake flow structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号