共查询到20条相似文献,搜索用时 15 毫秒
1.
Shavaleev NM Monti F Costa RD Scopelliti R Bolink HJ Ortí E Accorsi G Armaroli N Baranoff E Grätzel M Nazeeruddin MK 《Inorganic chemistry》2012,51(4):2263-2271
We report new bis-cyclometalated cationic iridium(III) complexes [(C(^)N)(2)Ir(CN-tert-Bu)(2)](CF(3)SO(3)) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluorophenyl)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or5-trifluoromethyl) as C(^)N ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or blue-green phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-459 nm. The corresponding quantum yields and observed excited-state lifetimes are up to 76% and 46 μs, respectively, and the calculated radiative lifetimes are in the range of 46-82 μs. In solution, the photophysical properties of the complexes are solvent-independent, and their emission color is tuned by variation of the substituents in the cyclometalating ligand. For most of the complexes, an emission color red shift occurs in going from solution to neat solids. However, the shift is minimal for the complexes with bulky tert-butyl or trifluoromethyl groups on the cyclometalating ligands that prevent aggregation. We report the first example of an iridium(III) isocyanide complex that emits blue phosphorescence not only in solution but also as a neat solid. 相似文献
2.
Hidetaka Tsujimoto Hotaka Asuka Shigeru Ikawa Hiroyuki Nakazumi 《Journal of organometallic chemistry》2010,695(17):1972-10838
In order to develop highly emissive red phosphorescent materials for OLED application, novel bis-cyclometalated iridium(III) complexes were developed using the 1-(dibenzo[b,d]furan-4-yl)isoquinolinato-N,C3′ (dbfiq) cyclometalating ligand. When 1,3-bis(3,4-dibutoxyphenyl)propane-1,3-dionate (bdbp) is employed as an ancillary ligand, Ir(dbfiq)2(bdbp) 1 exhibits red photoluminescence (PL) at 640 nm with a quantum yield (ΦPL) of 0.61 (in toluene, 298 K). Replacement of bdbp to dipivaloylmethanate (dpm) and acetylacetonate (acac) (Ir(dbfiq)2(dpm) 2 and Ir(dbfiq)2(acac) 3, respectively) does not affect the PL spectrum, but reduces ΦPL to 0.55 and 0.49 for 2 and 3, respectively. Similar tendency is also found in the doped poly(methyl methacrylate) (PMMA) film, and 1 is more emissive (ΦPL = 0.17) than 2 and 3 (ΦPL = 0.08 and 0.06, respectively). Using 1 as a phosphorescent dopant, polymer light-emitting diodes (PLEDs) were fabricated, of which structure was ITO/PEDOT:PSS (40 nm)/PVCz:1:PBD (100 nm)/CsF (1 nm)/Al (250 nm). Pure red electroluminescence (EL) is obtained from the fabricated PLEDs, affording a CIE chromaticity coordinate of (0.68, 0.31). When 0.51 mol% of 1 is incorporated in the PVCz-based emitting layer, the PLED shows maximum luminance of 7270 cd m−2 at 16.5 V, power efficiency of 1.4 lm W−1 at 7.5 V, and external quantum efficiency of 6.4% at 9.0 V. PLEDs with the same structure and components were also fabricated using 2 and 3, and their device characteristics were investigated. In proportion to the PL quantum yields, 1 affords better device performance than 2 and 3. Owing to four butoxy groups introduced to the bdbp ligand, 1 exhibits high solubility in organic solvents such as chloroform and toluene, and thus, is an excellent red phosphorescent dopant for solution-processed OLEDs. 相似文献
3.
Summary Reactions of cinnamonitrile (trans-PhCH=CHCN) with [M(ClO4)(CO)(PPh3)2] (M=Rh or Ir) produce hydrogenation oftrans-PhCH=CHCN to PhCH2CH2CN at 100°C under 3 atm of hydrogen. 相似文献
4.
We report the synthesis, characterization, and photophysical and electrochemical properties of thirty luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)(2)(N-N)](PF(6)) (HN-C = 2-phenylpyridine, Hppy; 2-(4-methylphenyl)pyridine, Hmppy; 3-methyl-1-phenylpyrazole, Hmppz; 7,8-benzoquinoline, Hbzq; 2-phenylquinoline, Hpq; N-N = 4-amino-2,2'-bipyridine, bpy-NH(2); 4-isothiocyanato-2,2'-bipyridine, bpy-ITC; 4-iodoacetamido-2,2'-bipyridine, bpy-IAA; 5-amino-1,10-phenanthroline, phen-NH(2); 5-isothiocyanato-1,10-phenanthroline, phen-ITC; 5-iodoacetamido-1,10-phenanthroline, phen-IAA). The X-ray crystal structure of [Ir(mppz)(2)(bpy-NH(2))](PF(6)) has also been investigated. Upon irradiation, all the complexes display intense and long-lived luminescence under ambient conditions and in 77-K glass. On the basis of the photophysical and electrochemical data, the emission of most of these complexes is assigned to an excited state of predominantly triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi(N-N)) character. In some cases, triplet intraligand ((3)IL) (pi --> pi)(N-N or N-C(-)) excited states have also been identified. In view of the specific reactivity of the isothiocyanate and iodoacetamide moieties toward the primary amine and sulfhydryl groups, respectively, we have labeled various biological molecules with a selection of these luminescent iridium(III) complexes. The photophysical properties of the luminescent conjugates have been investigated. In addition, a heterogeneous assay for digoxin has also been designed on the basis of the recognition of biotinylated anti-digoxin by avidin labeled with one of the luminescent iridium(III) complexes. 相似文献
5.
Baranoff E Curchod BF Monti F Steimer F Accorsi G Tavernelli I Rothlisberger U Scopelliti R Grätzel M Nazeeruddin MK 《Inorganic chemistry》2012,51(2):799-811
A series of homologous bis-cyclometalated iridium(III) complexes Ir(2,4-di-X-phenyl-pyridine)(2)(picolinate) (X = H, F, Cl, Br) HIrPic, FIrPic, ClIrPic, and BrIrPic has been synthesized and characterized by NMR, X-ray crystallography, UV-vis absorption and emission spectroscopy, and electrochemical methods. The addition of halogen substituents results in the emission being localized on the main cyclometalated ligand. In addition, halogen substitution induces a blue shift of the emission maxima, especially in the case of the fluoro-based analogue but less pronounced for chlorine and bromine substituents. Supported by ground and excited state theoretical calculations, we rationalized this effect in a simple manner by taking into account the σp and σm Hammett constants on both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels. Furthermore, in comparison with FIrPic and ClIrPic, the impact of the large bromine atom remarkably decreases the photoluminescence quantum yield of BrIrPic and switches the corresponding lifetime from mono to biexponential decay. We performed theoretical calculations based on linear-response time-dependent density functional theory (LR-TDDFT) including spin-orbit coupling (SOC), and unrestricted DFT (U-DFT) to obtain information about the absorption and emission processes and to gain insight into the reasons behind this remarkable change in photophysical properties along the homologous series of complexes. According to theoretical geometries for the lowest triplet state, the large halogen substituents contribute to sizable distortions of specific phenylpyridine ligands for ClIrPic and BrIrPic, which are likely to play a role in the emissive and nonradiative properties when coupled with the heavy-atom effect. 相似文献
6.
Po-Ni Lai 《Journal of Coordination Chemistry》2019,72(8):1238-1252
AbstractSix new green to yellow-emitting heteroleptic bis-cyclometalated iridium(III) complexes of the type Ir(C?N)2(L?X) (C?N?=?cyclometalating ligand, L?X?=?monoanionic chelating ancillary ligand) bearing two widely used cyclometalating ligands (C?N?=?2-(2-thienyl)pyridine (thpy) and 2-phenylbenzoxazole (bo)) and six different ancillary ligands were prepared. In this study, the complexes include structurally diverse ancillary ligands that allow us to investigate several aspects of structure-property relationships. Ancillary ligands used in this study are small-bite-angle N-phenylacetamidate (paa), N-isopropylbenzamidate (ipba) and N,N′-diisopropylbenzamidinate (dipba), and larger bite-angle β-ketoiminate (acNac), β-diketiminate (NacNac), and β-thioketoiminate (SacNac). The emission color is governed by the choice of the cyclometalating ligand, but the ancillary ligands influence the electrochemical and photophysical properties. Electrochemical analysis shows that the energy of the HOMO varies substantially as the L?X structure is altered, whereas the energy of LUMO remains nearly constant. The emission maxima range from 537?nm to 590?nm, with solution quantum yields between 0.0094 and 0.60 and microsecond lifetimes. The results here reveal the ancillary ligands provide a channel to control redox properties and excited-state dynamics in cyclometalated iridium complexes that luminesce in the middle regions of the visible spectrum. 相似文献
7.
Chang YY Hung JY Chi Y Chyn JP Chung MW Lin CL Chou PT Lee GH Chang CH Lin WC 《Inorganic chemistry》2011,50(11):5075-5084
We report on the synthesis of a new series of iridium(III) complexes functionalized with various diimine chromophores, together with a facially coordinated dicyclometalated phosphite chelate and a monodentate anionic ancillary. This conceptual design presents a novel strategy in obtaining a new class of iridium(III) diimine complexes without employment of traditional nitrogen-containing polyaromatic cyclometalates. Additionally, we discuss the basic charactersistics of the ground and lower-lying excited states involved, as documented by crystal structural, photophysical studies, and density functional theory calculations. Fabrication of the green-emitting organic light-emitting diodes with one such dopant, [Ir(dbbpy)(tpit)NCS] (2b), where dbbpy and tpit represent di-tert-butyl-2,2'-bipyridine and dicyclometalated triphenylphosphite, respectively, was successfully made, attaining a peak external quantum efficiency (η(ext)), a luminance efficiency (η(l)), and a power efficiency (η(p)) of 14.1%, 46.6 cd A(-1), and 39.9 lm W(-1), respectively. 相似文献
8.
Cheng Wei Sheng Ren Wang Yan Liu Yuting Tong Bihai Chen Ping Wang Song 《Transition Metal Chemistry》2021,46(1):81-89
Transition Metal Chemistry - Four iridium(III) complexes (1–4) with sulfur-containing phenylpyridazine ligands were successfully synthesized and characterized. The structure of complex 3 was... 相似文献
9.
10.
The synthesis and luminescence of four new iridium (III) diazine complexes (1-4) were investigated. HOMO and LUMO energy levels of the complexes were estimated according to the electrochemical performance and the UV-Vis absorption spectra, showing the pyrimidine complexes have a larger increase for the LUMO than the HOMO orbital in comparison with the pyrazine complexes. Several high-efficiency yellow and green OLEDs based on phosphorescent iridium (III) diazine complexes were obtained. The devices emitting yellow light based on 1 with turn-on voltage of 4.1 V exhibited an external quantum efficiency of 13.2% (power efficiency 20.3 lm/W), a maximum current efficiency of 37.3 cd/A. The electroluminescent performance for the green iridium pyrimidine complex of 3 is comparable to that of the iridium pyridine complex (PPY)2Ir(acac) (PPY = 2-phenylpyridine), which is among the best reported. 相似文献
11.
Talarico AM Szerb EI Mastropietro TF Aiello I Crispini A Ghedini M 《Dalton transactions (Cambridge, England : 2003)》2012,41(16):4919-4926
Synthesis, crystal structural determination and photophysical properties of a series of heteroleptic cationic cyclometalated iridium(III) derivatives of general formula [(ppy)(2)Ir(en)]X (X = ClO(4)(-) (1), PF(6)(-) (2), Cl(-) (3), BPh(4)(-) (4)), are described. The assembly of the common molecular building block allows to get highly luminescent crystalline materials or to assemble poorly luminescent supramolecular channelled architectures, for which the additional contribution of oxygen quenching effects has been observed. Moreover, the high reproducibility of the preparations of the crystalline materials in their specific crystalline phases, makes the control of the supramolecular organization of photo-active iridium(III) complexes within the crystalline structures a useful synthetic procedure for the construction of highly luminescent materials. 相似文献
12.
Hsieh CH Wu FI Fan CH Huang MJ Lu KY Chou PY Yang YH Wu SH Chen IC Chou SH Wong KT Cheng CH 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(33):9180-9187
Five iridium bis(carbene) complexes, [Ir(pmi)(2)(pypz)] (1), [Ir(mpmi)(2)(pypz)] (2), [Ir(fpmi)(2)(pypz)] (3), [Ir(fpmi)(2)(pyim)] (4), and [Ir(fpmi)(2)(tfpypz)] (5) (pmi=1-phenyl-3-methylimdazolin-2-ylidene-C,C(2'); fpmi=1-(4-fluorophenyl)-3-methylimdazolin-2-ylidene-C,C(2'); mpmi=1-(4-methyl-phenyl)-3-methylimdazolin-2-ylidene-C,C(2'); pypz=2-(1H-pyrazol-5-yl)pyridinato; pyim=2-(1H-imidazol-2-yl)pyridinato; and tfpypz=2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridinato), were synthesized and their structures were characterized by NMR spectroscopy, mass spectroscopy and X-ray diffraction. These complexes showed phosphorescent emission with the emission maxima between 453 and 490 nm. Various spectrophotometric measurements, cyclic voltammetric studies, and density functional theory (DFT) calculations show that, unlike most of the phosphorescent cyclometalated iridium complexes, the lowest unoccupied molecular orbital (LUMO) energy and the emissive state of these iridium complexes are mainly controlled by the N,N'-heteroaromatic (N^N) ligand. Despite the fact that the LUMO levels of these complexes are mainly on the N^N ligands, the efficiencies of the electroluminescent (EL) devices are very high. For example, the EL devices using [Ir(mpmi)(2)(pypz)], [Ir(fpmi)(2)(pypz)], and [Ir(fpmi)(2)(tfpypz)] as the dopant emitters exhibited light- to deep-blue electrophosphorescence with external quantum efficiencies of 15.2, 14.1, and 7.6% and Commission Internationale d'énclairage (x,y) coordinates (CIE(x,y)) of (0.14, 0.27), (0.14, 0.18) and (0.14, 0.10), respectively. 相似文献
13.
2-Chloro-4-methylthiazole, 2-chlorobenzoxazole and 2-chlorobenzthiazole oxidatively add to both [IrCl(CO)(PMe2Ph)2] and [Pt(PhCHCHPh)(PEt3)2]; protonation of the products at nitrogen produces cationic carbene complexes. 相似文献
14.
We report on the synthesis and photophysical properties of blue emitting iridium(iii) complexes. The use of a negatively charged ligand, such as a triazolyl pyridine, allows a facile preparation, maintaining the high energy emission (blue region) of heteroleptic complexes. We discuss the role played by electron withdrawing substituents of a different nature and also how the substitution position of the same group influences the spectroscopical behaviour. 相似文献
15.
Four luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)2(N-N)](PF6) (HN-C = 2-(4-(N-((2-biotinamido)ethyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC2NH-biotin, N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (1a); N-N = 4,7-diphenyl-1,10-phenanthroline, Ph2-phen (2a); HN-C = 2-(4-(N-((6-biotinamido)hexyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC6NH-biotin, N-N = Me4-phen (1b); N-N = Ph2-phen (2b)), each containing two biotin units, have been synthesized and characterized. The photophysical and electrochemical properties of these complexes have been investigated. Photoexcitation of these iridium(III) diimine bis(biotin) complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission is assigned to a triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Ir) --> pi*(N-N)) excited state. The emissive states of complexes 1a,b are probably mixed with some 3IL (pi --> pi*) (Me4-phen) character. The interactions of these iridium(III) diimine bis(biotin) complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays and emission titrations. The potential for these complexes to act as cross-linkers for avidin has been examined by resonance-energy transfer- (RET-) based emission quenching experiments, microscopy studies using avidin-conjugated microspheres, and HPLC analysis. 相似文献
16.
Cationic iridium(III) complexes for phosphorescence staining in the cytoplasm of living cells 总被引:1,自引:0,他引:1
Yu M Zhao Q Shi L Li F Zhou Z Yang H Yi T Huang C 《Chemical communications (Cambridge, England)》2008,(18):2115-2117
Two cationic iridium(III) complexes with bright green and red emissions were demonstrated as phosphorescent dyes for living cell imaging. In particular, their exclusive staining in cytoplasm, low cytotoxicity and reduced photobleaching, as well as cell membrane permeability, make the two complexes promising candidates for the design of specific bioimaging agents. 相似文献
17.
A simple synthetic route was developed for nonconjugated dendritic iridium(III) complex based on tunable pyridine-based ligands. From an intermediate 2-bromopyridyl-4-methanol, three series of polybenzyloxy dendritic pyridine-based ligands with 2-phenyl, 2-benzothienyl, and 2,4-difluorophenyl subsitituents were easily synthesized via two-step reactions (Suzuki reaction and etherifying reaction). Using these pyridine derivatives as the CwedgeN ligands, these dendritic iridium(III) complexes exhibiting tunable photoluminescence from blue to red were obtained. The photoluminescence quantum yields of these dendritic complexes in neat films increased with the increasing generation number of dendritic CwedgeN ligands. Importantly, these iridium complexes were used as dopants for successfully fabricating polymer-based electrophosphorescent light-emitting diodes (PLEDs) with the highest external quantum efficiency of 12.8%. 相似文献
18.
19.
Francisca M. Albertí Juan J. Fiol Angel García-Raso Marta Torres A. Terrón Miquel Barceló-Oliver María J. Prieto Virtudes Moreno Elies Molins 《Polyhedron》2010
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex. 相似文献