首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Rill RL  Al-Sayah MA 《Electrophoresis》2004,25(9):1249-1254
Proteomics and peptidomics could benefit from simple methods for high-resolution separation of oligopeptides analogous to slab gel electrophoresis of proteins. Gels of Pluronic F127 copolymer surfactant were investigated as media for slab gel electrophoresis of oligopeptides using a trypsin digest of myoglobin. Concentrated solutions of Pluronic F127 are fluid at low temperatures (相似文献   

2.
Oligonucleotides have developed into highly versatile and selective therapeutics over the past 20 years. More than five discrete mechanisms of action have been reported and more than 10 different chemical modifications have been used to extend their in vivo half-life and reduce their toxicity. Capillary gel electrophoresis (CGE) has been used extensively for the quantitative analysis of oligonucleotide therapeutics in both preclinical and clinical studies since the 1990s. The success of CGE is based on its extraordinary resolving power, which allows for the simultaneous determination of the parent drug and its metabolites. More recently, capillary gel electrophoresis has seen renewed interest with the emergence of replaceable gels with single-base resolving power and new capillary electrophoresis-mass spectrometry interfaces. This review discusses the bioanalysis of therapeutic oligonucleotides showing the evolution of the field over the past two decades leading to the current new approaches. Included in this review are topics such as different gel types, sample introduction modes, sample extraction procedures, separation conditions and detection methods used in CGE, along with discussions of the successes and limitations associated with each.  相似文献   

3.
The present review covers papers published in the years 1997 and 1998 on DNA sequencing by capillary and microdevice electrophoresis. The article does not include other electrophoretic DNA applications such as analysis of oligonucleotides, genotyping, and mutational analysis. Capillary gel electrophoresis (CGE) is starting to become a viable competitor to slab gel electrophoresis for DNA sequencing. Commercially available multicapillary array sequencers are now entering sequencing facilities which to date have totally relied on traditional slab gel technology. CGE research on DNA sequencing therefore becomes increasingly concerned with the critical task of fine-tuning the operational parameters to create robust sequencing systems. Electrophoretic microdevices are being considered the next technological step in DNA sequencing by electrophoresis.  相似文献   

4.
R. Sonoda  H. Nishi  K. Noda 《Chromatographia》1998,48(7-8):569-575
Summary Capillary gel electrophoresis (CGE) has been recognized as an effective method for the analysis of oligonucleotides. CGE using polymer solutions is especially useful and effective compared with that using crosslinked gels, because of easy change of media. Replacement of media leads to the reproducible separation of analytes. We have investigated CGE analysis of oligonucleotides of less than 20 bases employing various kinds of polymers. Polyacrylamide, dextrin, dextran, pullakin, and poly(ethylene glycol) were used as sieving matrixes at concentrations of 0–30 %. Polydeoxythymidylic acids [p(dT)11–20] were used as a test sample. These small oligonucleotides were successfully resolved on the basis of their base number by CGE using some of these polymer solutions. In particular, dextran was found to be effective and baseline separation was observed when a 30 % dextran solution was employed. Some validations such as linearity and reproducibility were also established and this method was found to be an adequate quality control method for small oligonucleotides. Finally, CGE using a 30 % dextran solution was successfully applied to impurity profiling of some synthetic oligonucleotides.  相似文献   

5.
Capillary gel electrophoresis (CGE) and polymer-based microelectrophoretic platforms were investigated to analyze low-abundant point mutations in certain gene fragments with high diagnostic value for colorectal cancers. The electrophoretic separations were carried out on single-stranded DNA (ssDNA) products generated from an allele-specific ligation assay (ligase detection reaction, LDR), which was used to screen for a single base mutation at codon 12 in the K-ras oncogene. The presence of the mutation generated a ssDNA fragment that was >40 base pairs (bp) in length, while the primers used for the ligation assay were <30 bp in length. Various separation matrices were investigated, with the success of the matrix assessed by its ability to resolve the ligation product from the large molar excess of unligated primers when the mutant allele was lower in copy number compared to the wild-type allele. Using CGE, LDR product models (44 and 51 bp) could be analyzed in a cross-linked polyacrylamide gel with a 1000-fold molar excess of LDR primers (25 bp) in approximately 45 min. However, when using linear polyacrylamide gels, these same fragments could not be detected due to significant electrokinetic biasing during injection. A poly(methylmethacrylate) (PMMA) microchip of 3.5 cm effective column length was used with a 4% linear polyacrylamide gel to analyze the products generated from an LDR. When the reaction contained a 100-fold molar excess of wild-type DNA compared to a G12.2D mutant allele, the 44 bp ligation product could be effectively resolved from unligated primers in under 120 s, nearly 17 times faster than the CGE format. In addition, sample cleanup was simplified using the microchip format by not requiring desalting of the LDR prior to loading.  相似文献   

6.
Capillary gel electrophoresis (CGE) is a powerful tool for the analysis of oligonucleotides owing to its extraordinary resolving power. However, the only feasible injection mode for CGE, electrokinetic injection, can cause bias of the injected amount and thus reproducibility issues for CGE methods. Although the source of the bias in electrokinetic injection for analysis of small molecules by capillary zone electrophoresis has long been identified, there are very few studies on electrokinetic injection issues for biological molecules analyzed by CGE. In this study, we report three issues related to electrokinetic injection for oligonucleotides. First, the relationship between the injection amount and the sample solution resistance is not always linear for oligonucleotides, as has been observed for small molecules. Second, the injecting water prior to an oligonucleotide sample dramatically improves the reproducibility of both the injected amount and resolution through a ‘stacking‐like’ mechanism. Third, optimizing the gel concentration dramatically increases the amount of oligonucleotide that is injected into the column. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Pluronic F-127 (PLF-127) gels were evaluated as a sustained-release vehicle for intraperitoneal administration of mitomycin C (MMC) in order to enhance the therapeutic effects of MMC against a Sarcoma-180 ascites tumor in mice. Tumor cell injections were made on day 0 and injections of MMC in 25% (w/w) PLF-127 on day 1, both intraperitoneally. A prolongation of the life span of tumor-bearing mice following injection of therapeutic PLF-127 was noted, and PLF-127 containing MMC was therapeutically more active than free drug. The high chemotherapeutic efficiency of MMC in PLF-127 was striking at high doses, which would be toxic in the case of the drug alone. PLF-127 gels exhibit reverse thermal behavior and are fluid at refrigerator temperature, but are soft gels at body temperature. The in vitro release experiments indicated that Pluronic gel might serve as a rate-controlling barrier and be useful as a vehicle for sustained-release preparations of MMC to be administered intraperitoneally. These results suggest that sustained-release occurs in the peritoneum and that effective drug concentrations can be maintained by the preparation.  相似文献   

8.
Capillary electrophoresis (CE) is a new, high-resolution tool for the analysis of DNA restriction fragments and DNA amplified by the polymerase chain reaction (PCR). By combining many of the principles of traditional slab gel methods in a capillary format, it is possible to perform molecular size determinations of human and plant PCR amplification products and DNA restriction fragments. DNA restriction fragments and PCR products were analyzed by dynamic sieving electrophoresis (DSE) and capillary gel electrophoresis (CGE). As part of this study, sample preparation procedures, injection modes, and the use of molecular mass markers were evaluated. Optimum separations were performed using the uPage-3 (3% T, 3% C) CGE columns with UV detection at 260 nm. Membrane dialysis and ultrafiltration/centrifugation proved to be nearly equivalent methods of sample preparation. Reproducibility studies demonstrated that blunt-ended, non-phosphorylated markers (specifically allele generated markers) provide the most accurate calibration for PCR product analysis. This study demonstrates that CE offers a high-speed, high-resolution analytical method for accurately determining molecular size and/or allelic type as compared with traditional methodologies.  相似文献   

9.
A low cost, 0.75-mW helium neon laser, operating in the green region at 534.5 nm, is used to excite fluorescence from tetramethylrhodamine isothiocyanate-labelled DNA fragments that have been separated by capillary gel electrophoresis. The detection limit (3 sigma) for the dye is 500 ymol [1 yoctomole (1 ymol) = 10(-24) mol] or 300 analyte molecules in capillary zone electrophoresis; the detection limit for labeled primer separated by capillary gel electrophoresis is 2 zmol [1 zeptomole (1 zmol) = 10(-21) mol]. The Richardson-Tabor peak-height encoded sequencing technique is used to prepare DNA sequencing samples. In 6% T, 5% C acrylamide, 7 M urea gels, sequencing rates of 300 bases/hour are produced at an electric field strength of 200 V/cm; unfortunately, the data are plagued by compressions. These compressions are eliminated with addition of 20% formamide to the sequencing gel; the gel runs slowly and sequencing data are generated at a rate of about 70 bases/hour.  相似文献   

10.
Gao F  Tie C  Zhang XX  Niu Z  He X  Ma Y 《Journal of chromatography. A》2011,1218(20):3037-3041
The separation and sequencing of DNA are the main objectives of the Human Genome Project, and this project has also been very useful for gene analysis and disease diagnosis. Capillary electrophoresis (CE) is one of the most common techniques for the separation and analysis of DNA. DNA separations are usually achieved using capillary gel electrophoresis (CGE) mode, in which polymer gel is packed into the capillary. Compared with a traditional CGE matrix, a hydrophilic polymer matrix, which can be adsorb by the capillary wall has numerous advantages, including stability, reproducibility and ease of automation. Various water-soluble additives, such as linear poly(acrylamide) (PAA) and poly(N,N-dimethylacrylamide) (PDMA), have been employed as media. In this study, different star-shaped PDMA polymers were designed and synthesized to achieve lower polymer solution viscosity. DNA separations with these polymers avoid the disadvantages of high viscosity and long separation time while maintaining high resolution (10 bp between 271 bp and 281 bp). The influences of the polymer concentration and structure on DNA separation were also determined in this study; higher polymer concentration yielded better separation performance, and star-like polymers were superior to linear polymers. This work indicates that modification of the polymer structure is a potential strategy for optimizing DNA separation.  相似文献   

11.
The separation of fluorescent-labeled ssDNA fragments of equal length based on differences in sequence was achieved through the use of guanosine gels (G-gels) formed by guanosine-5'-monophosphate (GMP) in capillary gel electrokinetic chromatography (CGEKC) with LIF detection. Baseline resolution was achieved for homodimers and homopentamers of A, T, and C. G-gel CGEKC provided better resolution than CZE, MEKC, or a sieving gel in CGE. Resolution improved with increasing GMP, indicating that the interaction is linked to structural organization of the G-gel. Fluorescence intensity and anisotropy show that the order of interaction with G-gels is T>C>A. We then investigated four conformationally similar, polymorphic 76-mers with A/G substitutions that are utilized in forensic DNA typing. Resolution was achieved by CGEKC but not CZE or CGE. In CGEKC, the negatively charged G-gels and oligonucleotides electromigrate toward the positive inlet while being driven by EOF to the negative outlet. The net forward velocity is the greatest for oligonucleotides most closely associated with the slower, more cumbersome G-gel network. For the 76-mers, resolution increases with increasing difference in guanosine content between strands and, for a given difference, with increasing total guanosines in the strands.  相似文献   

12.
The production by baby hamster kidney cells of recombinant antithrombin III (r-AT III), the main inhibitor of thrombin, factor Xa and other proteases of the clotting cascade, was monitored by capillary isotachophoresis using mixtures of continuous spacers. The results were compared with those obtained by capillary zone electrophoresis (CZE). The downstream process, which incorporated anion-exchange and heparin affinity chromatography, was monitored by CZE under acidic conditions and voltage ramping. The purified product was characterized by its isoelectric point and molecular mass. Isoelectric points of the three major and three minor isoforms of AT III were evaluated by capillary isoelectric focusing using a pH range of 4–6 and various mobilization procedures. The molecular mass of AT III was investigated by capillary gel electrophoresis (CGE), applying removable dextran gels. Both parameters could be determined within 30 min using only one coated capillary. The results showed an excellent correspondence with those achieved with conventional slab gels. The affinity complex between AT III and thrombin could also be detected by CGE and the heparin dependence of the affinity reaction could be investigated.  相似文献   

13.
L. tenuis and L. corniculatus seeds are morphologically very similar but their purchase prices are quite different. Chromosome number counting is the only test used thus far in laboratories for the identification of these seeds. Recently, the flavonol's pattern has been used as a criterion for differentiation. In the present work, we studied the storage protein patterns of different Lotus seed samples by capillary gel electrophoresis (CGE), as an alternative method, comparing it with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The seeds were treated according to International Seed Testing Association (ISTA) recommendations. CGE separations were performed using an uncoated capillary of 18 cm effective length and 50 microns i.d. and the Bio-Rad Protein Kit (Hercules, CA, U.S.A.). On-line detection was carried out at 220 nm.  相似文献   

14.
张宏燕  鲁丹丹  吴利霞  周喆  王升启 《色谱》2008,26(5):540-543
为了进行硫代反义寡核苷酸药物FT19的质量控制研究,建立了用阴离子交换高效液相色谱(AX-HPLC)和毛细管凝胶电泳(CGE)分析自行合成的FT19有关物质的方法。设计合成了FT19的硫代不完全序列(P=O)1和短序列(n-x)并将它们作为已知杂质。在AX-HPLC上,使用的分析柱为DNA Pac PA-100 (4 mm×250 mm);流动相A为10 mmol/L NaOH-0.1 mol/L NaCl,流动相B为10 mmol/L NaOH-3 mol/L NaCl;梯度洗脱条件为流动相B液在8 min内从60%升至100%;流速1 mL/min;柱温40 ℃;检测波长为260 nm。CGE所用毛细管规格为内径100 μm,总长度为31 cm,有效长度为20 cm;电泳缓冲溶液为三羟甲基氨基甲烷(Tris)-硼酸-7 mol/L尿素,pH 8.5;采用电动进样,进样电压-10 kV;分离胶为250 g/L的聚丙烯酰胺;检测波长为254 nm。结果表明,FT19与硫代不完全的(P=O)1序列在AX-HPLC上能够达到基线分离,与短序列(n-1)在CGE上能达到基线分离。说明AX-HPLC和CGE联合应用能够很好地分析FT19中的有关物质。  相似文献   

15.
Capillary gel electrophoresis and capillary electrophoresis using entangled polymer solutions was investigated for their applicability for the separation of low-molecular-mass RNAs (transfer RNA and 5S ribosomal RNA), with a size range of 70–135 nucleotides, from bacteria. Cross-linked polyacrylamide gel-filled capillaries (3 and 5%) were used for capillary gel electrophoresis. Good resolution was obtained suing gel-filled capillaries only for small tRNAs with lengths to 79 nucleotides, larger tRNAs and 5S rRNA could not be resolved using this method. Buffers containing sieving additives were employed to improve separations of RNA by capillary electrophoresis using entangled polymer solutions. The use of linear sieving polymers in buffers resolved 5S rRNA and tRNAs, even when they possessed only different secondary structure or small differences in length (1–5 nucleotides).  相似文献   

16.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

17.
18.
The separation of the four major whey proteins by sodium dodecyl sulphate (SDS)-capillary gel electrophoresis (CGE) is described. Whilst commercially purified whey proteins could be analysed using the recommended protocol, the more complex nature of an acid whey and a reconstituted whey protein concentrate (WPC) powder necessitated considerable refinement of the CGE sample buffer. Individual whey proteins in the acid whey and WPC samples were then also separated and quantitated using capillary zone electrophoresis, polyacrylamide gel electrophoresis (PAGE) and HPLC methods and the results were compared. The values obtained for -lactalbumin (-Lac) and β-lactoglobulin (β-Lg) were consistent throughout the various methods, although size-exclusion HPLC, SDS-PAGE and SDS-CGE could not separate the two β-Lg variants or the glycosylated form of -Lac from the β-Lg. There was considerable variation in the values for the bovine serum albumin and immunoglobulin determined by the different methods and it was concluded that none of the methods could satisfactorily quantitate all four whey proteins.  相似文献   

19.
Capillary gel electrophoresis (CGE) in the presence of sodium dodecyl sulfate (SDS) is a well-established and widely used protein analysis technique in the biotechnology industry, and increasingly becoming the method of choice that meets the requirements of the standards of International Conference of Harmonization (ICH). Automated single channel capillary electrophoresis systems are usually equipped with UV absorbance and/or laser-induced fluorescent (LIF) detection options offering general applicability and high detection sensitivity, respectively; however, with limited throughput. This shortcoming is addressed by the use of multicapillary gel electrophoresis (mCGE) systems with LED-induced fluorescent detection (LED-IF), also featuring automation and excellent detection sensitivity, thus widely applicable to rapid and large-scale analysis of biotherapeutics, especially monoclonal antibodies (mAb). The methodology we report in this paper is readily applicable for rapid purity assessment and subunit characterization of IgG molecules including detection of non-glycosylated heavy chains (NGHC) and separation of possible subunit variations such as truncated light chains (Pre-LC) or alternative splice variants. Covalent fluorophore derivatization and the mCGE analysis of the labeled IgG samples with multi-capillary gel electrophoresis are thoroughly described. Reducing and non-reducing conditions were both applied with and without peptide N-glycosidase F mediated deglycosylation.  相似文献   

20.
A novel approach for the fluidic self-assembly (FSA) of microparts in a multibatch process utilizing the thermal behavior of the carrier fluid as a means for selecting binding sites is presented. In the system studied, fluidic assembly takes place due to a capillary bridge between hexadecane deposited on a hydrophobic patch on a substrate and a hydrophobic surface on a micropart suspended in a carrier fluid. When desired, FSA of microparts is prevented by causing the surrounding carrier fluid to form a gel when heated, offering a method for directing self-assembly to sites that are not heated. It is shown that a suitable carrier fluid is 15 wt % Pluronic F127, which gels at about 40 degrees C when tested in the geometry used to demonstrate the concept. Experimental results demonstrating FSA and thermally controlled fluidic assembly (TCFSA) of plastic microparts dispersed in Pluronic F127 solution are presented. Potentially, TCFSA offers a general method for directed assembly as it relies on restricting the transport of microparts to a site rather than interfering with the fundamental attractive forces responsible for self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号