首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(24):6196-6198
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.  相似文献   

2.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

3.
We report the direct laser desorption/ionization (LDI) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of four inorganic coordination complexes: monometallic [Ir(dpp)(2)Cl(2)](PF(6)), homonuclear trimetallic ([(bpy)(2)Ru(dpp)](2)RuCl(2))- (PF(6))(4), and heteronuclear [(tpy)Ru(tpp)Ru(tpp)RhCl(3)](PF(6))(4) and ([(bpy)(2)Ru(dpp)](2)IrCl(2))(PF(6))(5) (dpp = 2,3-bis-(2'-pyridyl)pyrazine, bpy = 2,2'-bipyridine, tpy = 2,2',6',2"-terpyradine, tpp = 2,3,5,6,-tetrakis-(2'-pyridyl)pyrazine). Spectral intensities and fragmentation patterns are compared and evaluated for instrument parameters, matrix selection, and matrix-to-analyte ratio. Direct LDI and MALDI mass spectra of the monometallic complex showed the same ion peaks and differed only in the relative peak intensities. Direct LDI of the trimetallic complexes produced only low-mass fragments containing one metal at most. MALDI spectra of the trimetallic complexes exhibited little fragmentation in the high-mass region (>1500 Da) and less fragmentation in the low-mass region compared to direct LDI. Significant fragments of the molecules were detected and identified, including ligand fragments, intermediate-mass fragments such as [Ru(tpy)](+), and molecular ions with varying degrees of PF(6)(-) loss ([M - n(PF(6))](+), where n = 1-3). A correlation exists between the solution-phase electrochemistry and the observed [M - n(PF(6))](+) series of peaks for the trimetallic complexes. Proper matrix selection for MALDI analysis was vital, as was an appropriate matrix-to-analyte ratio. The results demonstrate the applicability of MALDI-TOFMS for the structural characterization of labile inorganic coordination complexes.  相似文献   

4.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(15):4044-4050
Supramolecular trimetallic complexes [((tpy)RuCl(BL))(2)RhCl(2)](3+) where tpy = 2,2':6',2' '-terpyridine and BL = dpp or bpm [dpp = 2,3-bis(2-pyridyl)pyrazine and bpm = 2,2'-bipyrimidine] have been synthesized and characterized. The mixed-metal complexes couple a reactive rhodium(III) center to two ruthenium(II) light absorbers to form a light absorber-electron collector-light absorber triad. The variation of the bridging (dpp and bpm) and terminal (tpy in lieu of bpy) ligands has some profound effects on the properties of these complexes, and they are remarkably different from the previously reported [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+) system. The electrochemical data for both title trimetallics consist of overlapping Ru(III/II) couples for both terminal metals at 1.12 V versus the Ag/AgCl reference electrode. Cathodically an irreversible Rh(III/I) reduction followed by bridging ligand reductions is seen. This is indicative of highest occupied molecular orbitals (HOMO) localized on the terminal ruthenium metal centers and a lowest unoccupied molecular orbital (LUMO) residing on the rhodium. This rhodium-based LUMO is in contrast to the bpy analogue [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+), which has a bpm(pi) localized LUMO. This orbital inversion by terminal ligand variation illustrates the similar energy of these Rh(dsigma) and bpm(pi) orbitals within this structural motif. Both title trimetallics possess broad, low-energy Ru --> BL charge transfer absorbances at 540 nm (dpp) and 656 nm (bpm). A comparison of the spectroscopic, electrochemical, and spectroelectrochemical properties of these trimetallic complexes is presented.  相似文献   

5.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

6.
Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF(1), trans-bpy-TTF(1), and cis-bpy-TTF(2) have been prepared and characterized. X-ray analysis of trans-bpy-TTF(1) is also reported. Such ligands have been used to prepare two new trinuclear Ru(II) complexes, namely, [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(1))](PF(6))(6) (9; bpy=2,2'-bipyridine; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(2))](PF(6))(6) (10). These compounds can be viewed as coupled antennas and charge-separation systems, in which the multichromophoric trinuclear metal subunits act as light-harvesting antennas and the tetrathiafulvalene electron donors can induce charge separation. The absorption spectra, redox behavior, and luminescence properties (both at room temperature in acetonitrile and at 77 K in a rigid matrix of butyronitrile) of the trinuclear metal complexes have been studied. For the sake of completeness, the mononuclear compounds [(bpy)(2)Ru(bpy-TTF(1))](PF(6))(2) (7) and [(bpy)(2)Ru(bpy-TTF(2))](PF(6))(2) (8) were also synthesized and studied. The properties of the tetrathiafulvalene-containing species were compared to those of the model compounds [Ru(bpy)(2)(4,4'-Mebpy)](2+) (4,4'-Mebpy=4,4'-dimethyl-2,2'-bipyridine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy)](6+). The absorption spectra and redox behavior of all the new metal compounds can be interpreted by a multicomponent approach, in which specific absorption features and redox processes can be assigned to specific subunits of the structures. The luminescence properties of the complexes in rigid matrices at 77 K are very similar to those of the corresponding model compounds without TTF moieties, whereas the new species are nonluminescent, or exhibit very weak emissions relative to those of the model compounds in fluid solution at room temperature. Time-resolved transient absorption spectroscopy confirmed that the potentially luminescent MLCT states of 7-10 are significantly shorter lived than the corresponding states of the model species. Photoinduced electron-transfer processes from the TTF moieties to the (excited) MLCT chromophore(s) are held responsible for the quenching processes.  相似文献   

7.
The in vitro photobiology of the supramolecular complexes [{(bpy)2Ru(dpp)}2RhCl2]Cl5 and [{(bpy)2Os(dpp)}2RhCl2]Cl5 [bpy=2,2'-bipyridine; dpp=2,3-bis(2-pyridyl)pyrazine] with African green monkey kidney epithelial (Vero) cells was investigated. Previously, the complexes have been shown to photocleave DNA in the presence or absence of O2. Vero cell replication was uninhibited for cells exposed to the metal complex but protected from light. Vero cells that were exposed to metal complex, rinsed, and illuminated with >460 nm light showed a replication response that was metal complex concentration-dependent. Vero cells exposed to 3.0-120 microM [{(bpy)2Ru(dpp)}2RhCl2]Cl5 and illuminated showed inhibition of cell growth, with evidence of cell death seen for complex concentrations>or=10 microM. Cells exposed to [{(bpy)2Os(dpp)}2RhCl2]Cl5 at concentrations of 5.5-110 microM, rinsed, and illuminated showed only inhibition of cell growth. The impact of [{(bpy)2Ru(dpp)}2RhCl2]Cl5 and [{(bpy)2Os(dpp)}2RhCl2]Cl5 on cell growth following illumination shows the promise of this new structural motif as a photodynamic therapy agent.  相似文献   

8.
Two classes of synthetically useful bimetallic complexes of the form [(tpy)M(tpp)RuCl(3)](PF(6)) and [(tpy)M(tpp)Ru(tpp)](PF(6))(4) have been prepared and their spectroscopic and electrochemical properties investigated (tpy = 2,2':6',2"-terpyridine, tpp = 2,3,5,6-tetrakis(2-pyridyl)pyrazine, and M = Ru(II) or Os(II)). Synthetic methods have been developed for the stepwise construction of tpp-bridged systems using a building block approach. In all four complexes, the tpp that serves as the bridging ligand is the site of localization of the lowest unoccupied molecular orbital (LUMO). The nature of the HOMO (highest occupied molecular orbital) varies depending upon the components present. In the systems of the type [(tpy)M(tpp)RuCl(3)](PF(6)), the ruthenium metal coordinated to tpp and three chlorides is the easiest to oxidize and is the site of localization of the HOMO. In contrast, for the [(tpy)M(tpp)Ru(tpp)](PF(6))(4) systems, the HOMO is based on the metal, M, that is varied, either Ru or Os. This gives rise to systems which possess a lowest lying excited state that is always a metal-to-ligand charge transfer state involving tpp but can be tuned to involve Os or Ru metal centers in a variety of coordination environments. The synthetic variation of the components within this framework has allowed for understanding the spectroscopic and electrochemical properties. Bimetallic systems incorporating this tpp ligand have long-lived excited states at room temperature (lifetimes of ca. 100 ns). The bimetallic system [(tpy)Ru(tpp)Ru(tpp)](PF(6))(4) has a longer excited state lifetime than the monometallic system from which it was constructed, [(tpy)Ru(tpp)](PF(6))(2). Details of the spectroscopic and electrochemical studies are reported herein.  相似文献   

9.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

10.
The tridentate ligand 3-(pyrid-2'-yl)dipyrido[3,2-a:2',3'-c]phenazine (pydppz) has been prepared in two steps by elaboration of 2-(pyrid-2'-yl)-1,10-phenanthroline. Both homoleptic [Ru(pydppz)(2)](2+) and heteroleptic [Ru(tpy)(pydppz)](2+) (tpy = 2,2';6',2' '-terpyridine) complexes have been prepared and characterized by (1)H NMR. The absorption and emission spectra are consistent with low-lying MLCT excited states, which are typical of Ru(II) complexes. Femtosecond transient absorption measurements show that that the (3)MLCT excited state of the heteroleptic complex [Ru(tpy)(pydppz)](2+) (tau approximately 5 ns) is longer-lived than that of the homoleptic complex [Ru(pydppz)(2)](2+) (tau = 2.4 ns) and that these lifetimes are significantly longer than that of the (3)MLCT state of the parent complex [Ru(tpy)(2)](2+) (tau = 120 ps). These differences are explained by the lower-energy (3)MLCT excited state present in [Ru(tpy)(pydppz)](2+) and [Ru(pydppz)(2)](2+) compared to [Ru(tpy)(2)](2+), resulting in less deactivation of the former through the ligand-field state(s). DFT and TDDFT calculations are consistent with this explanation. [Ru(tpy)(pydppz)](2+) and [Ru(pydppz)(2)](2+) bind to DNA through the intercalation of the pydppz ligand; however, only the heteroleptic complex exhibits luminescence enhancement in the presence of DNA. The difference in the photophysical behavior of the complexes is explained by the inability of [Ru(pydppz)(2)](2+) to intercalate both pydppz ligands, such that one pydppz always remains exposed to the solvent. DNA photocleavage is observed for [Ru(tpy)(pydppz)](2+) in air, but not for [Ru(pydppz)(2)](2+). The DNA damage likely proceeds through the production of small amounts of (1)O(2) by the longer-lived complex. Although both complexes possess the intercalating pydppz ligand, they exhibit different photophysical properties in the presence of DNA.  相似文献   

11.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

12.
A series of mixed-metal complexes coupling ruthenium light absorbers to platinum reactive metal sites through polyazine bridging ligands have been prepared of the form [(tpy)RuCl(BL)PtCl(2)](PF(6)) (BL = 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), 2,3-bis(2-pyridyl)benzoquinoxaline (dpb); tpy = 2,2':6',2' '-terpyridine). These systems possess electron-rich Ru metal centers bound to five polyazine nitrogens and one chloride ligand. This leads to complexes with low-energy Ru --> BL charge-transfer bands that are tunable with BL variation occurring at 544, 632, and 682 nm for dpp, dpq, and dpb, respectively. This tuning of the charge-transfer energy results from a stabilization of the BL(pi) orbitals in this series as evidenced by the cathodic shift in the first reduction of these complexes occurring at -0.50, -0.32, and -0.20 V vs Ag/AgCl, for dpp, dpq, and dpb, respectively. The chlorides bound to the Pt(II) center are substitutionally labile giving these complexes the ability to covalently bind to DNA. All three title bimetallics, [(tpy)RuCl(BL)PtCl(2)](PF(6)), avidly bind double-stranded DNA with t(1/2) = 1-2 min, substantially reducing the migration of DNA through an agarose gel. Details of the synthetic methods, FAB MS data, spectroscopic and electrochemical properties, and DNA binding studies are presented.  相似文献   

13.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

14.
Several new ruthenium(II) complexes containing 8-(dimethylphosphino)quinoline (Me(2)Pqn) were synthesized, and their structures and electrochemical/spectroscopic properties have been investigated. In addition to the mono(Me(2)Pqn) complex [Ru(bpy or phen)(2)(Me(2)Pqn)](PF(6))(2) (1 or 1'; bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline), the geometrical isomers trans(P)- and C(1)-[Ru(bpy)(Me(2)Pqn)(2)](PF(6))(2) (tP-2 and C(1)-2) and mer- and fac-[Ru(Me(2)Pqn)(3)](PF(6))(2) (m-3 and f-3) were also selectively synthesized and isolated. It was found that complexes tP-2 and m-3 were converted quantitatively to the corresponding C(1)-2 and f-3 isomers, respectively, by irradiation of light corresponding to the MLCT transition energy. The strong trans influence of the Me(2)P- donor group of Me(2)Pqn was confirmed by the X-ray structural analyses for 1, tP-2, m-3, and f-3. Cyclic voltammetry of a series of complexes, [Ru(bpy)(3)](PF(6))(2), 1, C(1)-2, and f-3, exhibited a reversible one-electron oxidation wave and two or three one-electron reduction waves. The oxidation potentials of the complexes gave a large positive shift with increasing number of coordinated Me(2)Pqn molecules, indicating a larger pi-acceptability of the Me(2)P- group compared with bpy or qn. Complex f-3 in EtOH/MeOH (4:1) glass at 77 K exhibited an intense long-lived (tau = 920 microseconds) emission arising from the quinoline-based (3)(pi-pi) excited state. In contrast, the mixed-ligand complexes 1, 1', and C(1)-2 showed a characteristic dual emission, giving a double-exponential emission decay, and the dual emission originates from both the bpy-based (3)MLCT and the quinoline-based (3)(pi-pi) emitting states.  相似文献   

15.
The absorption, emission, and infrared spectra, metal (Ru) and ligand (PP) half-wave potentials, and ab initio calculations on the ligands (PP) are compared for several [L(n)()Ru(PP)](2+) and [[L(n)Ru]dpp[RuL'(n)]](4+) complexes, where L(n) and L'(n) = (bpy)(2) or (NH(3))(4) and PP = 2,2'-bipyridine (bpy), 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), or 2,3-bis(2pyridyl)benzoquinoxaline (dpb). The energy of the metal-to-ligand charge-transfer (MLCT) absorption maximum (hnu(max)) varies in nearly direct proportion to the difference between Ru(III)/Ru(II) and (PP)/(PP)(-) half-wave potentials, DeltaE(1/2), for the monometallic complexes but not for the bimetallic complexes. The MLCT spectra of [(NH(3))(4)Ru(dpp)](2+) exhibit three prominent visible-near-UV absorptions, compared to two for [(NH(3))(4)Ru(bpy)](2+), and are not easily reconciled with the MLCT spectra of [[(NH(3))(4)Ru]dpp[RuL(n)]](4+). The ab initio calculations indicate that the two lowest energy pi orbitals are not much different in energy in the PP ligands (they correlate with the degenerate pi orbitals of benzene) and that both contribute to the observed MLCT transitions. The LUMO energies calculated for the monometallic complexes correlate strongly with the observed hnu(max) (corrected for variations in metal contribution). The LUMO computed for dpp correlates with LUMO + 1 of pyrazine. This inversion of the order of the two lowest energy pi orbitals is unique to dpp in this series of ligands. Configurational mixing of the ground and MLCT excited states is treated as a small perturbation of the overall energies of the metal complexes, resulting in a contribution epsilon(s) to the ground-state energy. The fraction of charge delocalized, alpha(DA)(2), is expected to attenuate the reorganizational energy, chi(reorg), by a factor of approximately (1 - 4alpha(DA)(2) + alpha(DA)(4)), relative to the limit where there is no charge delocalization. This appears to be a substantial effect for these complexes (alpha(DA)(2) congruent with 0.1 for Ru(II)/bpy), and it leads to smaller reorganizational energies for emission than for absorption. Reorganizational energies are inferred from the bandwidths found in Gaussian analyses of the emission and/or absorption spectra. Exchange energies are estimated from the Stokes shifts combined with perturbation--theory-based relationship between the reorganizational energies for absorption and emission values. The results indicate that epsilon(s) is dominated by terms that contribute to electron delocalization between metal and PP ligand. This inference is supported by the large shifts in the N-H stretching frequency of coordinated NH(3) as the number of PP ligands is increased. The measured properties of the bpy and dpp ligands seem to be very similar, but electron delocalization appears to be slightly larger (10-40%) and the exchange energy contributions appear to be comparable (e.g., approximately 1.7 x 10(3) cm(-1) in [Ru(bpy)(2)dpp](2+) compared to approximately 1.3 x 10(3) cm(-1) in the bpy analogue).  相似文献   

16.
Supramolecular bimetallic Ru(II)/Pt(II) complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) and their synthons [(tpy)Ru(L)(BL)](n)()(+) (where L = Cl(-), CH(3)CN, or PEt(2)Ph; tpy = 2,2':6',2'-terpyridine; and BL = 2,2'-bipyrimidine (bpm) or 2,3-bis(2-pyridyl)pyrazine (dpp)) have been synthesized and studied by cyclic voltammetry, electronic absorption spectroscopy, mass spectral analysis, and (31)P NMR. The mixed-metal bimetallic complexes couple phosphine-containing Ru chromophores to a reactive Pt site. These complexes show how substitution of the monodentate ligand on the [(tpy)RuCl(BL)](+) synthons can tune the properties of these light absorbers (LA) and incorporate a (31)P NMR tag by addition of the PEt(2)Ph ligand. The redox potentials for the Ru(III/II) couples occur at values greater than 1.00 V versus the Ag/AgCl reference electrode and can be tuned to more positive potentials on going from Cl(-) to CH(3)CN or PEt(2)Ph (E(1/2) = 1.01, 1.55, and 1.56 V, respectively, for BL = bpm). The BL(0/-) couple at -1.03 (bpm) and -1.05 V (dpp) for [(tpy)Ru(PEt(2)Ph)(BL)](2+) shifts dramatically to more positive potentials upon the addition of the PtCl(2) moiety to -0.34 (bpm) and -0.50 V (dpp) for the [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) bridged complex. The lowest energy electronic absorption for these complexes is assigned as the Ru(d pi) --> BL(pi*) metal-to-ligand charge transfer (MLCT) transition. These MLCT transitions are tuned to higher energy in the monometallic synthons when Cl(-) is replaced by CH(3)CN or PEt(2)Ph (516, 452, and 450 nm, for BL = bpm, respectively) and to lower energy when Pt(II)Cl(2) is coordinated to the bridging ligand (560 and 506 nm for BL = bpm or dpp). This MLCT state displays a broad emission at room temperature for all the dpp systems with the [(tpy)Ru(PEt(2)Ph)(dpp)PtCl(2)](2+) system exhibiting an emission centered at 750 nm with a lifetime of 56 ns. These supramolecular complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) represent the covalent linkage of TAG-LA-BL-RM assembly (TAG = NMR active tag, RM = Pt(II) reactive metal).  相似文献   

17.
The complexes [[Ru(ttp)(bpy)](2)(micro-adpc)][PF(6)](2) and [[Ru(ttp)(bpy)](2)(micro-dicyd)][PF(6)](2), where ttp is 4-toluene-2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, adpc(2)(-) is azodi(phenylcyanamide), and dicyd(2)(-) is 1,4-dicyanamidebenzene, were prepared and characterized by IR and NIR, vis spectroelectrochemistry, and cyclic voltammetry. The crystal structure of the complex, [[Ru(ttp)(bpy)](2)(micro-adpc)][PF(6)](2).6DMF, revealed a planar bridging adpc(2)(-) ligand with the cyanamide groups adopting an anti configuration. IR and comproportionation data are consistent with delocalized mixed-valence complexes, and a spectroscopic analysis assuming C(2)(h) microsymmetry leads to a prediction of multiple MMCT transitions with the lowest energy transition equal to the resonance exchange integral for the mixing of ruthenium donor and acceptor orbitals with a bridging ligand orbital (the preferred superexchange pathway). The solvent dependence of the MMCT band energy that is seen for [[Ru(ttp)(bpy)](2)(micro-adpc)](3+) is due to a ground state weakening of metal-metal coupling because of solvent donor interactions with the acceptor azo group of the bridging ligand.  相似文献   

18.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

19.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

20.
The isocyanide ligand forms complexes with ruthenium(II) bis-bipyridine of the type [Ru(bpy)(2)(CNx)Cl](CF(3)SO(3)) (1), [Ru(bpy)(2)(CNx)(py)](PF(6))(2) (2), and [Ru(bpy)(2)(CNx)(2)](PF(6))(2) (3) (bpy = 2,2'-bipyridine, py = pyridine, and CNx = 2,6-dimethylphenylisocyanide). The redox potentials shift positively as the number of CNx ligands increases. The metal-to-ligand charge-transfer (MLCT) bands of the complexes are located at higher energy than 450 nm and blue shift in proportion to the number of CNx ligands. The complexes are not emissive at room temperature but exhibit intense structured emission bands at 77 K with emission lifetimes as high as 25 micros. Geometry optimization of the complexes in the singlet ground and lowest-lying triplet states performed using density functional theory (DFT) provides information about the orbital heritage and correlates with X-ray and electrochemical results. The lowest-lying triplet-state energies correlate well with the 77 K emission energies for the three complexes. Singlet excited states calculated in ethanol using time-dependent density functional theory (TDDFT) and the conductor-like polarizable continuum model (CPCM) provide information that correlates favorably with the experimental absorption spectra in ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号