首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Spectral UV irradiance on vertical surfaces: a case study   总被引:1,自引:0,他引:1  
The UV spectral irradiance on horizontal and vertically oriented surfaces was measured throughout a cloudless day (18 July 1995) at Izana station, Tenerife, using a Bentham DTM300 spectroradiometer scanning from 290 to 500 nm in steps of 5 nm. Results show that irradiance measured on a horizontal surface is not proportional to irradiance on a vertical surface. The relation between the two depends upon orientation of the vertical surface, zenith angle and wavelength. At short UVB wavelengths surfaces directed toward the solar azimuth received their maximum irradiances much closer to solar noon than the maxima for longer wavelengths. Some vertical surfaces also received significantly more irradiance than the horizontal surface at long wavelengths during all but the central hours of the day, while at short wavelengths all vertical irradiances were less than the horizontal except for the measurements at the extreme ends of the day. Erythemally effective radiation followed the diurnal pattern of irradiations for short UVB wavelengths.  相似文献   

2.
Sheets of polysulphone film have been extensively used as detectors to monitor solar UVB radiation. The advantages of polysulphone detectors are that they are small in size, they have good thermal stability and they are sensitive to UVB radiation. The principal disadvantage of polysulphone detectors is that their spectral sensitivity includes part of the short-wavelength UVA. In this study, we investigate the spectral sensitivity of the polysulphone detector with a series of monochromatic (+/- 2 nm) excitations. We then compare the polysulphone-effective solar radiation with the erythemally effective solar radiation by comparing solar UVB data obtained with polysulphone films with those obtained with a spectroradiometer. From polysulphone data on the seasonal variation of solar UVB radiation, we estimate the corresponding fluctuations of the absorption of the ozone layer. We show that the spectral sensitivity of the polysulphone film is closer to the erythema action spectrum than that indicated by earlier data and that polysulphone detectors can be used to predict the erythema risk of solar UVB. Measurements on solar UVB with polysulphone films and with a spectroradiometer were found to be strongly correlated (R2 > 0.95). Finally, polysulphone-based measurements provide a good measure of the fluctuations of the stratospheric ozone layer.  相似文献   

3.
Fringing coral reefs provide a unique opportunity to study shallow aquatic ecosystems. A fringing coral reef system located in close proximity to a developed region was considered in this study. In such an environment, the rate of decay of dissolved organic matter is high and the penetration of higher energy ultraviolet‐B (UVB) extends a greater influence on species diversity, particularly upon shallow benthic communities. Results from a 9 month subsurface UVB exposure measurement campaign performed at a site located on the southern Queensland coast (Hervey Bay, 25°S) are presented in this research. For this, a novel dosimetric technique was utilized to measure long‐term subsurface UVB exposures. The resultant data set includes exposure measurements made during the significant La Niña event of late 2010 which resulted in unprecedented high sea surface temperatures and severe flooding across eastern Australia, impacting upon the lagoon regions of the Great Barrier Reef and Queensland's southern estuaries, including the study site. The influence of season, diurnal tidal variation, cloud cover and solar zenith angle were analyzed over the campaign period. Mean minimum daylight water depth was found to be the most significant factor influencing subsurface UVB.  相似文献   

4.
Photosynthetic primary production, the basis of most global food chains, is inhibited by UV radiation. Evaluating UV inhibition is therefore important for assessing the role of natural levels of UV radiation in regulating ecosystem behavior as well as the potential impact of stratospheric ozone depletion on global ecosystems. As both photosynthesis and UV fluxes are subject to diurnal variations, we examined the diurnal variability of the effect of UV radiation on photosynthesis in three diverse algal mats. In one of the mats (Cyanidium caldarium) a small mean decrease in primary productivity over the whole day occurred when both UVA and UVB were screened out. In two of the mats (Lyngbya aestuarii and Zygogonium sp.) we found a mean increase in the total primary productivity over the day when UVB alone was screened and a further increase when UVA and UVB were both screened out. Variations in the effects of UV radiation were found at different times of the day. This diurnal variability may be because even under the same solar radiation flux, there are different factors that may control photosynthetic rate, including nutritional status and other physiological processes in the cell. The results show the importance of assessing the complete diurnal productivity. For some of the time points the increase in the mean was still within the standard deviations in primary productivity, illustrating the difficulty in dissecting UV effects from other natural variations.  相似文献   

5.
A multiple linear correlation is done between atmospheric transmissivity for four biologically active radiation daily doses (UVB, erythemal, DNA and plant damage) T, and three parameters (daily sunshine fraction σ, cosine of the daily minimum solar zenith angle μmin and daily total ozone column Ω). T is defined as the ratio of a daily dose to its extra‐atmospheric value. The data used are spectral UV measurements (390–400 nm at 0.5 nm step) recorded along year 2000 and over 8 months of year 2001 at Briançon Station (Alps, 1300 m above sea level) that forms part of the French UV network. The coefficients obtained from year 2000 correlation permit to retrieve daily doses for year 2001 with an average error running from 3 to 9% for monthly mean values and from 2 to 4.5% for 3‐monthly mean values, depending on daily dose type. The retrieval of yearly mean value gives an error between 4 and 7.5%. Retrieving the daily dose of a given day, where σ≥ 0.2, introduces error running from 16 to 32% depending on daily dose. An attempt to retrieve the yearly mean UVB daily dose for a northern France site, from the previous coefficients, gives encouraging results.  相似文献   

6.
Abstract Many solar UV measurements, either terrestrial or personal, weight the raw data by the erythemal action spectrum. However, a problem arises when one tries to estimate the benefit of vitamin D(3) production based on erythemally weighted outdoor doses, like those measured by calibrated R-B meters or polysulphone badges, because the differences between action spectra give dissimilar values. While both action spectra peak in the UVB region, the erythemal action spectrum continues throughout the UVA region while the previtamin D(3) action spectrum stops near that boundary. When one uses the previtamin D(3) action spectrum to weight the solar spectra (D(eff)), one gets a different contribution in W m(-2) than what the erythemally weighted data predicts (E(eff)). Thus, to do proper benefit assessments, one must incorporate action spectrum conversion factors (ASCF) into the calculations to change erythemally weighted to previtamin D(3)-weighted doses. To date, all benefit assessments for vitamin D(3) production in human skin from outdoor exposures are overestimates because they did not account for the different contributions of each action spectrum with changing solar zenith angle and ozone and they did not account for body geometry. Here we describe how to normalize the ratios of the effective irradiances (D(eff)/E(eff)) to get ASCF that change erythemally weighted to previtamin D(3)-weighted doses. We also give the ASCF for each season of the year in the northern hemisphere every 5 degrees from 30 degrees N to 60 degrees N, based on ozone values. These ASCF, along with geometry conversion factors and other information, can give better vitamin D(3) estimates from erythemally weighted outdoor doses.  相似文献   

7.
Irradiance measurements of short wave (SW), photosynthetically active (PAR), ultraviolet-A (UVA) and ultraviolet-B (UVB) solar radiations were made on horizontal and vertical surfaces in the shade of trees under cloud-free and partly cloudy skies. All measurements were referenced to the irradiance of a horizontal surface above the canopy. For horizontal shaded surfaces under cloud-free skies, the values of the ratio (Rh) of below- to above-canopy horizontal irradiance were similar for the UVA and UVB wavebands and for the SW and PAR wavebands. However, Rh for the UV wavebands differed from that for the PAR and SW wavebands. Overall, values of Rh in the shade typically varied as PAR < SW < UVA < UVB. The irradiance ratios for vertical surface in the shade typically varied as UVB > UVA = SW > PAR. In absolute terms, UVB irradiance (Ih) on tree-shaded horizontal surfaces increased relative to a cloud-free sky when a translucent cirroform cloud was in front of the sun, but decreased when the cloud was in a region of sky away from the sun. Translucent cirroform cloud cover also tended to decrease the UVB irradiance (Iv) for a shaded vertical surface (either facing the sun or south) relative to that under cloud-free skies, regardless of where the clouds were in the sky. In all other wavebands the shaded Ih and Iv increased under translucent cirroform cloud cover relative to cloud-free skies, regardless of where the clouds were in the sky.  相似文献   

8.
The horizontal photon flux density of photosynthetically active radiation (PAR) and flux density of ultraviolet A (UVA) and ultraviolet B (UVB) radiation were measured in the vicinity of isolated single trees during the summer of 1996. Measurements were made under shade and sunlit conditions along a transect aligned with the solar disk and the tree trunk. Flux density measurements were normalized by the flux density at a reference location away from the tree. Results showed (1) a more rapid decline in the flux density of UVA and UVB radiation than PAR with decreasing distance to the tree trunk on both the sunlit and shaded side of a tree and (2) more rapid changes in the flux density of UVB radiation UVA radiation, and PAR with distance from the tree on the sunlit side of the tree than the shaded side of the tree. The UVB/PAR ratio was found to increase in the shadow of a tree with increasing distance from the tree to between 4 and 6 for the conditions of the study. The potential for detrimental effects by UVB flux density under conditions of the high ratio may be mitigated by sunflecks at a given location over the course of a day.  相似文献   

9.
The objective of this communication is to present the calculated ratio between UVA and UVB irradiance from sunrise to sunset and under a number of weather conditions. UVA plays an important role in the sun spectrum and a lot of attention has been paid lately regarding the protection of people from UVA. Solar spectra were collected in Kuwait City located at 29.3oNorth latitude (similar to that of Houston, TX) over a period of 8 months and under various weather conditions. Spectra were collected from 260 nm to 400 nm in 2 nm increments for solar elevation angles from 10o to 90o using a calibrated Optronics Laboratories OL‐742 Spectroradiometer. The measurements reported in this study the ratio of UVA (320–400 nm) to UVB (280–320 nm) in solar terrestrial radiation remains essentially constant and equal to 20 for the part of the day when the solar elevation is greater than 60o. Consequently the value of the ratio of solar UVA/UVB should be considered as equal to 20 for studies in photobiology and photomedicine. When the wavelength limiting the range of UVA and UVB is 315 nm (i.e. UVB: 280–315 nm and UVA: 315–400 nm) the ratio of UVA to UVB becomes equal to 41.  相似文献   

10.
A system to determine the spectral responsivity of ultraviolet (UV) radiometers has been developed and is routinely operated at the Central Ultraviolet Calibration Facility, at the National Oceanic and Atmospheric Administration. The instrument and the measurement methodologies are described. Results of measurements from thermally controlled broadband UV radiometers of the Robertson-Berger (R-B)-type are described. Systematic differences in the spectral response curves for these instruments have been detected. The effect of these differences on the field operation of UV-B radiometers has been studied by calculating the instrumental response from modeled UV spectra. The differences of the weighted spectral UV irradiances, measured by two radiometers with different spectral response functions, caused by the daily variation in the position of the sun were estimated for fixed values of total ozone, altitude and albedo, and for cloud-free conditions. These differences increase with the solar zenith angle and are as large as 8%. Larger differences in the instrumental response may be produced by ozone variations. Thus, care must be taken when analyzing data from R-B radiometers and comparing results from different instruments. Routine cycling of UV-B radiometers in operative networks without a careful determination of the spectral responsivity, or small drifts of the spectral responsivity, may strongly affect the accuracy of UV radiation measurements and produce an erroneous trend. Because of the possible differences among radiometers, it would not be practical to derive the long-term behavior of UV radiation without routine and thorough characterization of the spectral responsivities of the instruments.  相似文献   

11.
The solar ultraviolet radiation (UVR) exposure of 30 children and adolescents in three age groups (4-6 years, 7-9 years and 13-14 years) was measured for 1 week in late summer (February-March) in Durban, South Africa, using UVR-sensitive polysulfone film badges (PSFB) attached to the lapel region of the body. The mean and median values for all ages over the study period were 2.0 and 1.2 standard erythemal dose (SED) units, respectively, where 1 SED = 100 J x m(-2). Individual PSFB doses were analyzed as a function of age, gender and behavior. No significant statistical differences were found between different age groups; however, there was a statistical difference between males and females, with males generally receiving higher PSFB doses. Subjects completed UVR exposure journals documenting their time outdoors, shade versus sun conditions, nature of their activities, clothing worn and their use of sunscreen for each day of the study. Activity patterns were noted as the most important factor influencing individual UVR dose. Ambient erythemal UVR was measured by a Yankee Environmental Systems UVB pyranometer, and a relationship between ambient UVR and individual UVR dose was derived. On average, subjects received a dose of 4.6% of the total daily erythemal UVR. Based on this factor, the potential dose of an individual over a full annual cycle was estimated. Accordingly, there were 139 days during the year when an individual with skin type I (light skin) would be likely to experience minimal erythema and 97 and 32 days for individuals with skin types II and III, respectively.  相似文献   

12.
The broad-band normal incidence UVB beam radiation has been measured at Neve Zohar, Dead Sea basin, using a prototype tracking instrument composed of a Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The diffuse and beam fraction of the solar global UVB radiation have been determined using the concurrently measured solar global UVB radiation. The diffuse fraction was observed to exceed 80% throughout the year. The application of the results of these measurements to the possible revision of the photoclimatherapy protocol for psoriasis patients at the Dead Sea medical spas is now under investigation. The suggested revision would enable the sun-exposure treatment protocol to take advantage of the very high diffuse fraction by allowing the patient to receive the daily dose of UVB radiation without direct exposure to the sun, viz. receive the diffuse UVB radiation under a sunshade. This would require an increase in sun-exposure time intervals, as the UVB radiation intensity beneath a sunshade is less than that on an exposed surface.  相似文献   

13.
Abstract Quantifying individual exposure to ultraviolet radiation (UVR) is critical to understanding the etiology of a number of diseases including nonmelanotic and melanotic skin cancers. Measurements of personal exposure to solar UVR were made in Hobart, Tasmania in February (summer) 1991 for six different outdoor activities using UVR-sensitive polysulfone (PS) film attached at seven anatomical sites. Concurrent behavioral and environmental observations were also made. To date many studies have relied on subject recall to quantify past solar UVR exposures. To gain insight into the accuracy of subject recall the measured UVR exposures received by different subjects using the PS film were compared to those calculated from personal diaries and ambient solar UVB levels from a monitoring station. In general, when UVR exposure activities took place under close supervision, good correlations were obtained between the PS badges and the ambient measurements/diaries approach. Ultraviolet radiation exposures for the field study involving 94 subjects engaged in a number of outdoor activities are presented.  相似文献   

14.
Global irradiances measured in seven 5-nm bands of UV-B at Rockville, MD (39.1 degrees N, 77.1 degrees W) on 28 clear days near the summer solstice are convoluted with the erythemal action spectrum of human skin to determine dose rates at various hours of the day. These rates are averaged with respect to solar zenith angle to obtain the diurnal variation of mean dose rate and of the Sun Protection Factor (SPF) of the atmosphere (reciprocal of the normalized atmospheric transmissivity) on a typical clear summer day in Rockville. At a 45 degrees zenith angle the atmospheric SPF is computed to be 2.7 and increases rapidly to greater than 7 at 60 degrees. Dose rates are integrated with respect to time to obtain estimates of mean doses for various periods during clear days at Rockville in mid summer and near the autumnal equinox. In mid summer the effective erythemal UV-B exposure during the period when the solar zenith angle is less than 45 degrees is about five times greater than that during the remainder of the day. These observations provide scientific basis for a shadow rule for solar UV-B protection: when shadows are shorter than objects casting them, sunburn is much more likely than at other times.  相似文献   

15.
The body surface area of man is the relevant receiving surface for solar UV radiation. To consider this body surface geometry, the biologically-effective UV radiation of the solar global radiation was measured. This was done at 26 differently aligned measuring points whose orientation was determined by the angle of inclination (vertical) and the azimuth (horizontal). Approximately eight hundred sets of measurement series were carried out at 33 different sites. A simple model, developed from the data obtained, made it possible to calculate relative irradiance as a function of the angle of inclination and the ground reflection (UV albedo). Thus relative risk of solar UV exposure to different regions of the body can be assessed. In addition to this, if the irradiance on a horizontal plane (measured or calculated by a corresponding model) is taken into consideration, the absolute values for UV irradiance on tilted planes can be determined.  相似文献   

16.
Measurements were conducted at San Ya, China (18.4°N, 109.7°E, altitude 18 m) to investigate the diurnal variation of ocular exposure to ultraviolet (UV) radiation. The experimental apparatus was composed of a manikin and a dual-detector spectrometer to simultaneously measure ocular and ambient UV data. The experimental apparatus was rotated clockwise to simulate three different types of exposure. When the manikin was facing into the sun, the ocular exposure to UV radiation on a summer day was bimodally distributed. The maximum ocular UV irradiance occurred at solar elevations of around 40° and 50° for UVA and UVB respectively. The spectral irradiances were measured at specific wavelength to obtain the ocular biologically effective UV (UV(BE) ) irradiances for photokeratitis, photoconjunctivitis and cataract, and the UV index (UVI) was calculated at the same time point for comparison. When the manikin faced the sun, the maximal ocular UV(BE) irradiance values were obtained at the solar elevation where the UVI value was 8. The results of this study showed that protection against ocular overexposure during outdoor activities should be taken not only at noon but also at other times.  相似文献   

17.
UV radiation measured on normal-to-the-sun-oriented surfaces can show significantly higher global UV irradiance values compared to measurements on horizontal receivers. The direct component is amplified by the inverse cosine of the zenith angle, but over surfaces with high local albedo this accounts for only about half of the signal rise of global irradiance. The signal rise of the diffuse component, however, is strongly related to local albedo and solar elevation, which is demonstrated by 2 years of measurements of direct, diffuse, global, reflected and global normal-to-the-sun erythemal effective UV irradiance (UVery). Global UVery signal rises, on normal-to-the-sun-oriented versus horizontal receivers, of up to 65% were measured on fresh snow and solar elevation angles below 30 degrees. An empirical expression has been deduced from the measurements relating the ratio of normal-to-the-sun versus horizontal measurements of global UVery to surface albedo and solar elevation. This allows one to calculate the maximum global UVery irradiance levels which are to be expected on normal-to-the-sun-oriented surfaces with respect to horizontal measurements or model calculations.  相似文献   

18.
19.
Abstract— A meter for measuring the skin sunburn effectiveness of a light source is being used in an extensive network to provide solar data for correlation to skin cancer incidence. The solar radiation measured also affects a wide variety of organisms. The intensity of this band of radiation is also strongly affected by ozone concentration so that the output correlates with ozone thickness.
The meter spectral response is essentially the excitation spectrum of magnesium tungstate phosphor which is similar to the erythema action spectrum (EAS). In addition to the waterproofed, dose reading embodiment, a cheaper, easily transportable, batteryless, intensity reading meter with the same spectral response has been developed.
The deviation of any sunburn meter from the ideal erythema action spectrum can be calculated by convolution of a series of solar spectra against each of the two response spectra. Plotting the change in output against the change in input results in straight lines. Either log-log coordinates are required, or, as is done here, decibels can be used on linear coordinates. The angle between the straight lines is taken as the error. An error angle of 6.5° is calculated for the present meter.  相似文献   

20.
Exposure to solar UVA (320–400 nm) radiation can damage DNA and lead to skin disorders. Conventional dosim-etry using a single piece of polysulfone or diglycol carbonate (CR-39) cannot provide accurate measurement of the biologically effective irradiance for erythema for the UVA waveband. A package employing four dosimeters (polysulfone, nalidixic acid, 8-methoxypsoralen and phe-nothiazine) has been shown to be effective for use as a spectrum evaluator for evaluating the UVA source spectrum. In Brisbane, on a horizontal position, the spectrum evaluator requires about 5 min exposure in summer and about 20 min in winter. This amounts to about 10 mJ cm-2 of erythemal UV radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号