首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
The Diels-Alder reaction between anthracene and tetracyanoethylene in acetonitrile does not reach a steady-state during the first half-life. The reaction follows the reversible consecutive second-order mechanism accompanied by the formation of a kinetically significant intermediate. The experimental observations consistent with this mechanism include extent of reaction-time profiles which deviate markedly from those expected for the irreversible second-order mechanism and initial pseudo first-order rate constants which differ significantly from those measured at longer times. It is concluded that the reaction intermediate giving rise to these deviations cannot be the charge-transfer (CT) complex, which is formed during the time of mixing, but rather a more intimate complex with a geometry favorable to the formation of the Diels-Alder adduct. The kinetics of the reaction were resolved into the microscopic rate constants for the individual steps. The rate constants, as shown in equation 1, at 293 K were observed to be 5.46 M(-)(1) s(-)(1) (k(f)), 14.8 s(-)(1) (k(b)), and 12.4 s(-)(1) (k(p)). Concentration profiles calculated under all conditions show that intermediate concentrations increase to maximum values early in the reaction and then continually decay during the first half-life. It is concluded that the charge-transfer complex may be an intermediate preceding the formation of the reactant complex, but due to its rapid formation and dissociation it is not detected by the kinetic measurements.  相似文献   

2.
Quantum chemical calculations at the BP86/def2-SVP levels of theory have been carried out for the reaction pathways of the [Co(L)] (+)-catalyzed Diels-Alder reaction of isoprene with phenylacetylene, with L = dppe, iminA, iminB. The calculations suggest that the reactions take place in a stepwise fashion, starting with the formation of the complex [Co(L)(isoprene)(phenylacetylene)] (+) as precursor for the consecutive C-C bond formation. The actual Diels-Alder ring-closing reaction proceeds as an intramolecular addition of the ligands isoprene and phenylacetylene, yielding a metallacyclic intermediate after generation of the first carbon-carbon bond, which determines the regioselectivity of the reaction. There are four different conformations of the starting complexes [Co(L)(isoprene)(phenylacetylene)] (+) which initiate four different pathways yielding the 1,3-cyclohexadiene product. The energetically most stable conformations do not lead to the reaction pathways that have the lowest activation energies. All conformations and the associated pathways must be considered in order to obtain the kinetically most favorable reaction course. The calculated values for the regioselectivities of the [Co(L)] (+)-catalyzed Diels-Alder reaction agree exceptionally well with the experimental values. The calculations concur with the experimental finding that the para product is kinetically favored for L = dppe while the formation of the meta product is kinetically favored when L = iminA or iminB. The different regioselectivies for L = dppe and L = iminA or iminB come from (a) the steric interactions of the bidentate ligands with the isoprene and phenylacetylene moieties in [Co(L)(isoprene)(phenylacetylene)] (+), which determine the distance between the carbon atoms forming the C-C bond, and (b) the relative energies of the different starting complexes. The first C-C bond formed in the rate-determing step of the [Co(dppe)] (+)-catalyzed reaction yielding the para product is the C4-C1' bond, and for the meta product it is the C1-C1' bond. The opposite order is found for the [Co(iminA)] (+)- and [Co(iminB)] (+)-catalyzed reactions, where the C1-C2' bond formation is the initial step toward the para product, while the C4-C2' bond is first formed in the reaction yielding the meta product. The calculations suggest that a less polar solvent should reduce the preference for formation of the meta product in the [Co(iminA)] (+)- and [Co(iminB)] (+)-catalyzed reactions but would enhance the formation of the para product in the [Co(dppe)] (+)-catalyzed reaction. Experimental tests using toluene as solvent instead of dichloromethane confirm the theoretical predictions.  相似文献   

3.
Nishina Y  Kida T  Ureshino T 《Organic letters》2011,13(15):3960-3963
Isobenzofuran can be prepared from o-phthalaldehyde using hydrosilane. The formed isobenzofuran is trapped by an alkene via a Diels-Alder reaction. Further dehydration proceeds to furnish the conjugated aromatic compound. This multistep reaction was promoted by catalytic amounts of Sc(OTf)(3).  相似文献   

4.
The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Br?nsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Br?nsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the α,β-unsaturated dienophile (carbonyl and carboxyl), whereas proton catalysis is limited to carbonyl compounds.  相似文献   

5.
Two chiral copper(II) bis(oxazoline) complexes have been immobilized on silica via electrostatic interactions using a remarkably straightforward procedure. The immobilized catalysts were tested in a standard Diels-Alder reaction and gave surprising results. Where the immobilized Cu((S,S)-phenyl-box)(OTf)2 catalyst was used, the predominant enantiomer formed was the opposite of that produced using the same catalyst in a homogeneous reaction. This is a startling result given that the only difference is the electrostatic immobilization of the catalyst on amorphous silica. The activity of the catalyst in a hetero Diels-Alder reaction was also tested. This catalyst was also recycled, successfully maintaining a similar activity to the homogeneous analogue through a number of cycles.  相似文献   

6.
Kinsman AC  Kerr MA 《Organic letters》2000,2(22):3517-3520
[reaction: see text] Ultrahigh pressures and catalytic Yb(OTf)(3).2H(2)O were found to mediate Diels-Alder reactions of various electron-deficient dienophiles with 1,3-cyclohexadiene to produce endo-bicyclo[2.2. 2]oct-2-enes in moderate to excellent yield and selectivity. The proposed total synthesis of hapalindole Q based on bicyclo[2.2. 2]oct-2-ene construction by Diels-Alder reaction and subsequent olefin cleavage is outlined. Preliminary results demonstrating the viability of this strategy are presented.  相似文献   

7.
The reaction of o-alkynyl(oxo)benzenes 1 with alkynes 2 in the presence of a catalytic amount of AuCl(3) in (CH(2)Cl)(2) at 80 degrees C gave the [4+2] benzannulation products, naphthyl ketone derivatives 3 and 4, in high yields. When the reaction was carried out using AuBr(3) instead of AuCl(3), the reaction speed was enhanced and the chemical yield was increased. On the other hand, when the reaction was carried out in the presence of a catalytic amount of Cu(OTf)(2) and 1 equiv of a Br?nsted acid, such as CF(2)HCO(2)H, in (CH(2)Cl)(2) at 100 degrees C, the decarbonylated naphthalene products 5 were obtained in high yields. Similarly, the Cu(OTf)(2)-H(2)O-promoted reaction of the enynals 7 with an alkyne 2 afforded the corresponding [4+2] benzannulation products, decarbonylated benzene derivatives 8, in good yields. Both AuX(3)- and Cu(OTf)(2)-catalyzed benzannulations proceed most probably through the formation of the benzo[c]pyrylium ate complex 10, the Diels-Alder addition of alkynes 2 to the ate complex, and the resulting bicyclic pyrylium ion intermediate 12. The mechanistic difference between the AuX(3) and Cu(OTf)(2)-HA system is discussed.  相似文献   

8.
The Diels-Alder reaction of juglone with various styrenes in the presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) was promoted by B(OAc)(3) at room temperature. The reaction proceeded smoothly and gave the products in a good yield and with excellent regioselectivity. This strategy was applied to the total syntheses of tetrangulol and anhydrolandomycinone.  相似文献   

9.
The first successful example of the catalyzed Diels-Alder reaction of 1-methoxy-3-trimethylsiloxy-1,3-diene (Danishefsky's diene, 2a), giving the corresponding carbocyclic adducts, is described. The reaction of (Z)-ethylideneacetoacetate 1a with 2a is catalyzed with lanthanide salts such as Yb(OTf)(3) at 0 degrees C, affording the corresponding 2-cyclohexenone 3a in good yield with complete integrity of the starting geometry of 1a. The thermal version of the same cycloaddition results in a decrease in the cis arrangement of the 5-methyl and the 4-alkoxycarbonyl groups on 2-cyclohexenone. The catalyzed reaction of (E)-1a unexpectedly affords the cis-arranged 3a. The reaction path for the catalyzed Diels-Alder reaction is postulated on the basis of these results.  相似文献   

10.
通过Diels-Alder(D-A)反应,合成了具有规整化学结构的接枝共聚物,壳聚糖-O-聚乙二醇(CS-O-PEG).D-A反应所需双烯体(呋喃环)通过糠基硫醇与端甲基丙烯酸酯聚乙二醇之间的巯基-丙烯酸酯(thio-acrylate)反应合成得到;马来酰亚胺基丙酸通过活泼酯法偶联到十二烷基硫酸钠-壳聚糖复合物(SCC)羟基上,从而获得亲双烯体.采用红外光谱(FTIR)和核磁共振(1H-NMR)表征了中间产物与最终产物的结构,并用原位核磁监测D-A反应及其逆反应过程.结果表明,聚乙二醇双烯体可在水介质中温和条件下定量接枝到壳聚糖羟基上,反应具有点击特征;同时,聚乙二醇与壳聚糖之间的连接键在高温下(90℃)可通过D-A逆反应而发生断裂.  相似文献   

11.
The first CH/π solute-solvent interaction of C(60) was evidenced by the kinetic solvent effects in the Diels-Alder reaction with 1,3-cyclohexadiene based on the evaluation of linear free energy relationship of log k(2) with empirical solvent polarity and basicity parameters, E(T)(30) and D(π), respectively.  相似文献   

12.
Concentrated solutions of a series of organic compounds have been prepared and the effects of these solutes on the properties of the solvent system assessed as a function of their concentration and nature. Polarity, as measured by Reichardt's E(T)(30) probe, exhibits a linear variation with both solute and water concentration for simple solutes. Non-linear behaviour was also observed and is associated with preferential solvation or binding of the E(T)(30) probe molecule by the added solute. The observed trends in polarity are mirrored in the effects of these solutes on chemical reactivity and enzyme kinetics. Environmental effects on the kinetics of hydrolysis of 4-nitrophenyl dichloroacetate, the hydronium-ion catalysed hydrolysis of 2-(4-nitrophenoxy)-tetrahydropyran, the acyl transfer reaction between 4-nitrophenyl acetate and TRIS, the Diels-Alder reaction between 1,4-naphthoquinone and cyclopentadiene and the trypsin-catalysed hydrolysis of 4-nitrophenyl acetate are reported and discussed in terms of the properties of the solutes and the mechanistic requirements of these reactions. Linear correlations were observed between the logarithms of the rate constants for the acetal hydrolysis, acyl transfer and Diels-Alder reactions with water concentration. Since the latter varies linearly with E(T)(30), this indicates a linear free energy relationship between solution polarity and chemical reactivity.  相似文献   

13.
A concise synthetic pathway that enables the stereoselective construction of the tetracyclic core of nanolobatolide has been developed by applying a tandem ring-closing metathesis (RCM) reaction of dienynes, a Eu(fod)(3)-catalyzed intermolecular Diels-Alder reaction, and a biomimetic epoxide opening reaction as key steps.  相似文献   

14.
In addition to Diels-Alder and hetero-Diels-Alder reactions, tetrafluoro-o-benzoquinone (o-fluoranil) undergoes nucleophilic additions, addition-eliminations, dioxole formation, and charge-transfer complexation, reacting at every site on the molecular skeleton. It also effects dehydrogenations and other oxidations. The quinone can function as a (CF)(4) synthon.  相似文献   

15.
Poly-2-vinylfuran, synthesized by free-radical polymerization of 2-vinylfuran, was characterized by nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. The pendant furan rings on the polymer backbone were then used as the diene component of a Diels-Alder reaction with maleic anhydride. The juxtaposition of the furan rings at first suggested an “avalanche” Diels-Alder reaction, in which the product of one cyclization would be the reactant of the next. A lack of polymer stereoregularity and the reversibility of the Diels-Alder reaction, however, prevented its formation. On the other hand, when the dienophile was used in a 1:1 molar ratio with respect to furan the smooth reaction produced a new polymer, the maleic anhydride adduct of poly-2-vinylfuran, which characterized by NMR and IR spectroscopy, was air stable and soluble in a number of solvents up to 70% transformation. When heated to 160°C the polymer reverted to maleic anhydride and somewhat decomposed poly-2-vinylfuran.  相似文献   

16.
Full details of two versions of the total synthesis of epoxyquinols A, B, and C and epoxytwinol A (RKB-3564D) are described. In the first-generation synthesis, the HfCl(4)-mediated diastereoselective Diels-Alder reaction of furan with Corey's chiral auxiliary has been developed. In the second-generation synthesis, a chromatography-free preparation of an iodolactone, by using acryloyl chloride as the dienophile in the Diels-Alder reaction of furan, and the lipase-mediated kinetic resolution of a cyclohexenol derivative have been developed. This second-generation synthesis is suitable for large-scale preparation. A biomimetic cascade reaction involving oxidation, 6pi-electrocyclization, and then Diels-Alder dimerization is the key reaction in the formation of the complex heptacyclic structure of epoxyquinols A, B, and C. Epoxytwinol A is synthesized by the cascade reaction composed of oxidation, 6pi-electrocyclization, and formal [4 + 4] cycloaddition reactions. A 2H-pyran, generated by oxidation/6pi-electrocyclization, acts as a good diene, reacting with several dienophiles to afford polycyclic compounds in one step. An azapentacyclic compound is synthesized by a similar cascade reaction composed of the four successive steps: oxidation, imine formation, 6pi-azaelectrocyclization, and Diels-Alder dimerization.  相似文献   

17.
We report in-plane enyne metathesis and subsequent Diels-Alder reactions on self-assembled monolayers (SAMs) terminating in vinyl and acetylenyl groups on gold. After the formation of SAMs of vinyl and acetylenyl group-containing dithiols on gold, in-plane enyne metathesis of the vinyl and acetylenyl groups, leading to the formation of 1,3-diene, was achieved on the SAMs, and Diels-Alder reactions were then successfully performed with tetracyanoethylene, maleic anhydride, and maleimide. The reactions were confirmed by FT-IR spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary-ion mass spectrometry. In-plane enyne metathesis developed herein would offer a versatile platform for the functionalization of surfaces with mild reaction conditions and a high compatibility in functional groups.  相似文献   

18.
A short synthesis of (+/-)-deoxypenostatin A (28) has been carried out using the convergent coupling of dienal 11, epoxide 13, and methylenetriphenylphosphorane (17) to prepare trienol 19 in only two steps. The key step is the Yb(OTf)(3)-catalyzed intramolecular Diels-Alder reaction of hydrated trienyl glyoxylate 23, which gives lactone 24 stereoselectively. Elaboration of lactone 24 to enone 27 by an intramolecular Horner-Emmons Wittig reaction and epimerization completes the synthesis of 28. Modest yields of Diels-Alder adducts 45a and 46a could be prepared analogously from MEM ether 44c, but the sensitivity of several of the intermediates precluded the elaboration of 45a to penostatin A (1).  相似文献   

19.
Palladium(0)-catalyzed reaction of allene-substituted allylic carboxylates 3-8 employing 2-5 mol % of Pd(dba)(2) in refluxing toluene leads to the carbocyclization and elimination of carboxylic acid to give bicyclo[4.3.0]nonadiene and bicyclo[5.3.0]decadiene derivatives (12-17). The carbon-carbon bond formation is stereospecific, occurring syn with respect to the leaving group. Addition of maleic anhydride as a ligand to the above-mentioned procedures changed the outcome of the reaction, and under these conditions 3-5 afforded cycloisomerized products 21-23. The experimental results are consistent with a mechanism involving oxidative addition of the allylic carboxylate to Pd(0) to give an electron-deficient (pi-allyl)palladium intermediate, followed by nucleophilic attack by the allene on the face of the pi-allyl opposite to that of the palladium atom. Furthermore, it was found that the Pd(dba)(2)-catalyzed cyclization of the trans-cycloheptene derivative (trans-8) can be directed to give either the trans-fused (trans-17) or the cis-fused (cis-17) ring system by altering the solvent. The former reaction proceeds via a nucleophilic trans-allene attack on the (pi-allyl)palladium intermediate, whereas the latter involves a syn-allene insertion into the allyl-Pd bond of the same intermediate. The products from the carbocylization undergo stereoselective Diels-Alder reactions to give stereodefined polycyclic systems in high yields.  相似文献   

20.
We report on the dual reactivity, i.e. anionic Meisenheimer sigma adduct formation and Diels-Alder adduct formation, of a series of heteroaromatic super-electrophiles, including 4,6-dinitro-benzofuroxan, -N-arylbenzotriazoles (4), -benzothiadiazole and -benzoselenadiazole. Measured pK(a)(H(2)O) values for sigma adduct formation provide a quantitative measure of super-electrophilic reactivity with a satisfactory correlation between the Mayr E electrophilicity parameter and pK(a)(H(2)O): E = -0.662 pK(a)(H(2)O) (or pK(R+) -3.20 (r(2) = 0.987). The most highly electrophilic, pre-eminent super-electrophile is 4,6-dinitrotetrazolopyridine (E = -4.67, pK(a)(H(2)O) = 0.4), which supercedes the reference Meisenheimer super-electrophile, 4,6-dinitrobenzofuroxan (E = -5.06, pK(a) = 3.75), having itself an E value superior by 8 orders of magnitude compared to 1,3,5-trinitrobenzene as the benchmark normal Meisenheimer electrophile (E = -13.19, pK(a)(H(2)O) = 13.43). (For relevant kinetic parameters as well as E and pK(a) values, see .) In a parallel study we have investigated Diels-Alder (normal and inverse electron demand) reactivity of this series of heteroaromatic electrophiles and have shown that Mayr E values are valid predictors of whether DA adducts will form and how rapidly. The observed order of pericyclic reactivity corresponds to E = -8.5 as the demarcation E value, in close agreement with sigma complexation; thus pointing to a common origin for the two processes, i.e. an inverse relationship between the degree of aromaticity of the carbocyclic ring and ease of sigma complexation, or DA reactivity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号