首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Nuclear Physics B》2001,607(3):549-576
We investigate a class of non-abelian spin-singlet (NASS) quantum Hall phases, proposed previously. The trial ground and quasihole excited states are exact eigenstates of certain (k+1)-body interaction Hamiltonians. The k=1 cases are the familiar Halperin abelian spin-singlet states. We present closed-form expressions for the many-body wave functions of the ground states, which for k>1 were previously defined only in terms of correlators in specific conformal field theories. The states contain clusters of k electrons, each cluster having either all spins up, or all spins down. The ground states are non-degenerate, while the quasihole excitations over these states show characteristic degeneracies, which give rise to non-abelian braid statistics. Using conformal field theory methods, we derive counting rules that determine the degeneracies in a spherical geometry. The results are checked against explicit numerical diagonalization studies for small numbers of particles on the sphere.  相似文献   

2.
3.
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2)K Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.  相似文献   

4.
We identify some hidden symmetries of Chern-Simons theories, such as appear in the effective theory for quantized Hall states. This allows us to determine which filling fractions admit spin-singlet quantum Hall states. Our results shed some light on states already observed at , and transitions between them. We identify SU(2), or higher, symmetries of many additional states — including spin-polarized states. Our symmetries classify low-lying excited states and may be of use in the construction of trial wavefunctions, but are typically not present in the edge theory, where they are lifted by non-universal couplings.  相似文献   

5.
We propose a pseudo-potential Hamiltonian for the Zhang-Hu’s generalized fractional quantum Hall states to be the exact and unique ground states. Analogously to Laughlin’s quasi-hole (quasi-particle), the excitations in the generalized fractional quantum Hall states are extended objects. They are vortex-like excitations with fractional charges +(−)1/m3 in the total configuration space CP3. The density correlation function of the Zhang-Hu states indicates that they are incompressible liquid.  相似文献   

6.
7.
《Nuclear Physics B》1997,506(3):685-694
We present an approach to the computation of the non-abelian statistics of quasiholes in quantum Hall states, such as the Pfaffian state, whose wavefunctions are related to the conformal blocks of minimal model conformal field theories. We use the Coulomb gas construction of these conformal field theories to formulate a plasma analogy for the quantum Hall states. A number of properties of the Pfaffian state follow immediately, including the Berry phases, which demonstrate the quasiholes' fractional charge, the abelian statistics of the two-quasihole state, and equal-time ground state correlation functions. The non-abelian statistics of multi-quasihole states follows from an additional assumption.  相似文献   

8.
We demonstrate the existence of correlated electronic states as paired spin excitations of lateral quantum dots in the integer quantum Hall regime. Starting from the spin-singlet filling-factor nu=2 droplet, by increasing the magnetic field we force the electrons to flip spins and increase the spin polarization. We identify the second spin-flip process as one accompanied by correlated, spin depolarized phases, interpreted as pairs of spin excitons. The correlated states are identified experimentally in few-electron lateral quantum dots using high source-drain voltage spectroscopy.  相似文献   

9.
We report a study of spin-related magnetotransport properties of a type II broken-gap heterostructure formed by InAs substrate bulky doped with Mn and δ-Mn-doped GaInAsSb epilayer. Planar and vertical quantum magnetotransport in a 2D-electron-hole system at the single type II broken-gap InAs/GaInAsSb heterointerface was investigated in high magnetic fields under the quantum Hall regime up to 15 T at low temperature (T=1.5 K). The I-V characteristics near the dielectric phase boundary show the step-like behavior that corresponds to the quantum conductance in a disordered 2D structure through the extended edge states of the nearest Landau level closest to the Fermi level. The value of these steps is determined by the orientation of the 2D-electron spin at the Landau level and the magnetic moment of Mn in the δ-layer.  相似文献   

10.
We construct the explicit formulation of the probabilistically perfect quantum cloning machine that perfectly duplicates the input states chosen from the special set consisting of the linearly independent and nonorthogonal quantum states with 〈φiφj〉 = r ∈ (0, 1)(i ≠ j). The success probabilities of cloning the input states are equal and maximal. As two examples, we present the explicit transformations of the optimal 1 → 2 probabilistically perfect quantum cloning of the real states in 2 and 3 dimensions. The success probabilities of each of two cloning machines are equal and maximal.  相似文献   

11.
12.
13.
Jinwu Ye 《Annals of Physics》2008,323(3):580-630
We use both Mutual Composite Fermion (MCF) and Composite Boson (CB) approach to study balanced and imbalanced Bi-layer Quantum Hall systems (BLQH) and make critical comparisons between the two approaches. We find the CB approach is superior to the MCF approach in studying ground states with different kinds of broken symmetries. In the phase representation of the CB theory, we first study the Excitonic superfluid (ESF) state. The theory puts spin and charge degree freedoms in the same footing, explicitly bring out the spin-charge connection and classify all the possible excitations in a systematic way. Then in the dual density representation of the CB theory, we study possible intermediate phases as the distance increases. We propose there are two critical distances dc1 < dc2 and three phases as the distance increases. When 0 < d < dc1, the system is in the ESF state which breaks the internal U(1) symmetry, when dc1 < d < dc2, the system is in an pseudo-spin density wave (PSDW) state which breaks the translational symmetry, there is a first-order transition at dc1 driven by the collapsing of magneto-roton minimum at a finite wavevector in the pseudo-spin channel. When dc2 < d < ∞, the system becomes two weakly coupled ν = 1/2 Composite Fermion Fermi Liquid (FL) state. There is also a first-order transition at d = dc2. We construct a quantum Ginzburg Landau action to describe the transition from ESF to PSDW which break the two completely different symmetries. By using the QGL action, we explicitly show that the PSDW takes a square lattice and analyze in detail the properties of the PSDW at zero and finite temperature. We also suggest that the correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature-dependent drag consistent with the experimental data. Then we study the effects of imbalance on both ESF and PSDW. In the ESF side, the system supports continuously changing fractional charges as the imbalance changes. In the PSDW side, there are two quantum phase transitions from the commensurate excitonic solid to an incommensurate excitonic solid and then to the excitonic superfluid state. We also comment on the effects of disorders and compare our results with the previous work. The very rich and interesting phases and phase transitions in the pseudo-spin channel in the BLQH is quite similar to those in 4He system with the distance playing the role of the pressure. A BLQH system in a periodic potential is also discussed. The Quantum Hall state to Wigner crystal transition in single layer Quantum Hall system is studied.  相似文献   

14.
The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola-Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.  相似文献   

15.
We consider the N → M probabilistically perfect quantum cloning machine that perfectly produces M faithful copies from N identical input states, where the input states are selected, with prior probabilities η1and η2 = 1 − η1, from a given set of the two linearly independent states |ψ1⊗ N = (cosθ|0〉 + sinθ|1〉)⊗ N and |ψ2⊗ N = (sinθ|0〉 + cosθ|1〉)⊗ N (θ∈(0,π/2)). We derive the optimal distribution of the success probabilities. When M approaches infinite, the probabilistically perfect quantum cloning can be regarded as a kind of the unambiguous state discrimination, and theoretically provides the upper bound of the unambiguous state discrimination. By using the optimal distribution of the success probabilities of the optimal asymmetric 1 → M probabilistically perfect quantum cloning, we can derive the maximum average success probability of the unambiguous discrimination of two nonorthogonal quantum states |ψ1〉and|ψ2〉. As an example, we give the explicit transformation of the optimal symmetric 1 → M probabilistically perfect quantum cloning to copy the two input states |ψ1〉 and |ψ2〉.  相似文献   

16.
17.
We consider quantum Hall states at even-denominator filling fractions, especially nu=5/2, in the limit of small Zeeman energy. Assuming that a paired quantum Hall state forms, we study spin ordering and its interplay with pairing. We give numerical evidence that at nu=5/2 an incompressible ground state will exhibit spontaneous ferromagnetism. The Ginzburg-Landau (GL) theory for the spin degrees of freedom of paired Hall states is a perturbed CP2 model. We compute the coefficients in the GL theory by a BCS Stoner mean-field theory for coexisting order parameters, and show that even if repulsion is smaller than that required for a Stoner instability, ferromagnetic fluctuations can induce a partially or fully polarized superconducting state.  相似文献   

18.
We describe a parallel algorithm for solving the time-independent 3d Schrödinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t ∝ (Nnodes)−0.95 ± 0.04. This makes it possible to solve the 3d Schrödinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices.  相似文献   

19.
We study magnetotransport properties of graphite and rhombohedral bismuth samples and found that in both materials applied magnetic field induces the metal-insulator- (MIT) and reentrant insulator-metal-type (IMT) transformations. The corresponding transition boundaries plotted on the magnetic field-temperature (B − T) plane nearly coincide for these semimetals and can be best described by power laws T ∼ (B − Bc)κ, where Bc is a critical field at T = 0 and κ = 0.45 ± 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as signatures of quantum phase transitions associated with the M-I and I-M transformations.  相似文献   

20.
This paper generalises the theorem already obtained [Solid State Commun. 127 (2003) 505] for the high mobility, dissipationless, integer quantum Hall systems at T=0 K to the T>0 K situations. The results obtained are again suitable at both microscopic and macroscopic scales. In comparison [Solid State Commun. 127 (2003) 505], this generalised form gives a universal explicit expression for the Hall conductance σxy(μ,T) between any two points selected in such a system as a function of chemical potential and temperature. Further, thermal deviation Δσxy(μ,T) from the exact quantised values of σxy(μ,T) and the minimum slopes of Hall plateaux in the T>0 cases, observed already in experiments, are also derived in theory. Similar to those in the T=0 K case [Solid State Commun. 127 (2003) 505], the overall quantum Hall behaviour of the system can again be obtained from this theory by simply selecting two points on the two Hall contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号