共查询到18条相似文献,搜索用时 31 毫秒
1.
介绍了武汉大学自行研制的Raman多通道激光雷达系统,给出了整个系统的设计原理及主要技术参量.详细描述了利用Raman激光雷达原理反演大气气溶胶消光系数、后向散射系数和激光雷达比等光学特性的方法,并对求解消光系数过程中的关键部分做了讨论分析.同时对武汉上空对流层低空大气气溶胶、云以及边界层等光学特性进行了实时探测反演.实验结果表明:该Raman多通道激光雷达系统在夜晚对低空气溶胶的垂直分布特性具有较好的探测能力,工作性能可靠. 相似文献
2.
3.
双波长米散射激光雷达探测对流层气溶胶消光特性 总被引:4,自引:0,他引:4
新近研制了一台基于532和1 064 nm的双波长米散射激光雷达(dual-wavelength lidar,简称DWL),用于探测对流层大气气溶胶可见和红外波段的消光特性及其时空分布,同时用于粒子尺度谱垂直分布特征的研究。系统采用4个通道分别用于接收对流层下部和中上部532及1 064 nm的大气回波信号,有效地缩短了获取大气信息的时间。采用窄带滤光片,并借助光阑,将接收的激光大气回波信号谱线(米散射和瑞利散射光谱)从天空太阳背景噪声中分离,提高系统的白天探测能力。叙述了雷达系统的总体结构和技术参数以及数据处理方法。利用该雷达对合肥地区(117.16°E, 31.90°N)上空的气溶胶进行了探测。给出了对流层大气气溶胶532及1 064 nm消光系数的垂直廓线及其时空分布典型探测结果。分析了气溶胶波长依赖指数的空间垂直分布。讨论了对流层大气气溶胶光学厚度月变化。观测和分析结果表明,双波长具备昼夜连续观测对流层大气气溶胶的能力,可以很好的反映气溶胶粒子的时间和空间分布特征。 相似文献
4.
银川上空大气气溶胶光学特性激光雷达探测研究 总被引:4,自引:0,他引:4
小型米散射激光雷达是广泛使用的探测大气气溶胶光学特性的有效工具。作者研制了一台小型米散射激光雷达,并利用该激光雷达于2009年4月1日至4月10日期间对宁夏银川地区(北纬38°29′, 东经106°06′)上空的大气气溶胶光学特性以及时空分布进行了观测。系统选用532 nm波长激光作为光源,采用Fernald法对接收到的大气回波信号进行反演,得到了气溶胶消光系数的高度分布廓线及24 h内气溶胶消光系数相对浓度的时空变化特性;并对期间一次明显的沙尘天气进行了观测和分析。观测结果表明,该小型米散射激光雷达能够对大气气溶胶及其时空分布情况进行有效、连续的观测,其观测结果有利于分析该地区气溶胶及沙尘天气的变化趋势。 相似文献
5.
非同轴激光雷达由于存在发射激光与接收望远镜之间的不完全重叠区, 造成近场回波信号与真实大气信号不一致. 对于多波长激光雷达, 这种不一致更为突出和复杂. 然而, 近场大气是人类活动最集中的区域, 因此对多波长激光雷达近场信号进行校正, 对于了解和探究边界层大气具有十分重要的意义. 提出了一种利用粒子谱仪测量近地层气溶胶尺度谱分布并运用Mie 散射理论和低层大气指数衰减规律, 进而直接校正多波长激光雷达消光系数廓线近场信号的新方法. 通过对晴天、多云天气和雾天多波长气溶胶消光系数廓线近场信号的校正, 证明了该方法的可行性和实用性. 该方法着重考虑了多波长激光雷达比的波长依赖性和气溶胶粒子谱分布的天气相关性, 将该方法用于近地层大气消光系数廓线校正, 减少了由于不考虑这两个因素带来的消光系数廓线反演和校正的不确定性. 该方法对于研究不同天气情况下边界层内的大气气溶胶物理、光学特性具有一定的实用价值和借鉴意义. 相似文献
6.
7.
提出一种基于正则化方法改进的气溶胶微物理特性反演算法,通过引入模式半径范围作为先验约束,并对差异最小值附近的解进行平均,以解决反演时存在的欠定问题。对1500组不同类型的气溶胶粒径分布进行仿真,测试了所提反演算法对气溶胶微物理特性参数的反演精度与稳定性。考虑在20%随机高斯噪声的影响下,90%以上气溶胶的有效半径、体积浓度和表面积浓度反演相对误差可被控制在±33%、±45%和±50%范围内。误差统计结果表明,所提算法基于多波长的气溶胶光学特性,可实现对气溶胶粒径分布的可靠反演。 相似文献
8.
《光学技术》2021,47(5):570-576
基于激光雷达连续观测数据反演得到的多种气溶胶光学参数,包括气溶胶后向散射系数(355/532/1064nm)、消光系数(532/607nm)、退偏比(532p/532s)、激光雷达比(532nm)及波长指数(355/532nm和532/1064nm),分析了2019年10月北京城区三种不同污染事件(空气污染/污染沙尘/纯沙尘)的气溶胶光学特性。结果表明,空气污染气溶胶退偏比(波长指数)为0.10±0.02(1.2±0.19),激光雷达比(43±7sr)相比典型城市污染气溶胶偏低,可能与硝酸盐等水溶性气溶胶吸湿增长或二次有机气溶胶的生成有关;污染沙尘退偏比(波长指数)为0.19±0.03(1.0±0.35),激光雷达比为51±7sr;纯沙尘相比前者退偏比(0.25±0.03)较大,波长指数(0.11±0.44)较小,激光雷达比为40±4sr。 相似文献
9.
利用偏振-米散射激光雷达探测对流层大气气溶胶的光学特性及其时空分布.介绍了该雷达的结构、技术参数和探测原理.获得了气溶胶的消光系数垂直廓线和光学厚度,并对这些结果进行了分析和讨论.结果表明,该雷达能较好地探测对流层大气气溶胶的光学特性及其时空分布. 相似文献
10.
《光学技术》2015,(4):289-295
利用多波长差分吸收雷达同时观测Miyakejima(34°04′22″N,139°31′40″E)火山爆发在对流层产生的SO2、O3以及气溶胶。此观测技术通过合理选择激光波长对((288.83nm,289.83nm),(288.10nm,289.83nm))能消除观测数据中由于SO2、O3的吸收以及气溶胶散射导致的相互影响,提高观测精度。用波长对(288.10nm,289.83nm)测量O3的浓度,然后再用实测O3所产生的吸收矫正其对SO2观测(使用波长对(288.83nm,289.83nm))浓度的影响;气溶胶消光系数通过实测弱吸收波长回波信号(或由532nm的单波长回波信号)直接反演所得,并用来矫正气溶胶对SO2、O3观测产生的散射和消光误差;介绍了实验之前用于测试光路调试的定标误差分析,以及由于激光能量和实测大气的不稳定产生的统计误差。实测火山爆发产生的对流层二氧化硫的浓度高达45ppb,测量误差小于10ppb,远远大于通常情况下二氧化硫的本底浓度1ppb;长期观测对流层臭氧的浓度约为45ppb,在2000年冬季对臭氧进行了时间为半个月的连续观测,最高浓度达250ppb,该高浓度臭氧可能来自于平流层的传输,该数据有助于研究对流层顶与平流层底交接区的大气运动。 相似文献
11.
基于后向轨迹追踪模式分析SACOL气溶胶 来源及其光学特性 总被引:1,自引:0,他引:1
利用2007年11月至2010年10月NCEP/NCAR再分析资料和HYSPLIT模式模拟了后向气流轨迹, 分析了兰州大学半干旱气候环境观测站(SACOL)所在地区的大气输送特征. 采用聚类分析方法将1096条轨迹分类, 得到15簇反映主要特征的典型气流, 研究了不同气流特征、出现频数及季节分布特点, 与主要天气形势和天气系统的关系. 统计主要气流路径所占比例, 其中源于四川和重庆的气流占总路径的16%, 为影响SACOL的主要路径, 其次为源于局地和陕西的气流, 路径最少的是东欧和孟加拉国. 结合同期MFRSR地基辐射计反演的870nm气溶胶光学厚度和波长指数, 分析了不同气团源控制下的气溶胶光学特性和粒子性质特征. 揭示了最大平均气溶胶光学厚度达0.29± 0.12(平均值± 标准差), 气团源于塔克拉玛干沙漠; 最小平均光学厚度的气团源于孟加拉国, 为0.14± 0.02. 根据研究站点周围环境条件和气团源区地理条件以及移动轨迹, 分析其可能影响, 并定量给出不同源区气团对SACOL三年平均气溶胶光学厚度的贡献率. 结果表明, 源于局地和区域性气团贡献平均光学厚度的41.1%, 沙尘区贡献28.4%, 中亚为17.9%, 远距离东欧和中东为12.6%. 相似文献
12.
13.
14.
利用云和气溶胶粒子的光学特性软件包(OPAC)对陆地型、海洋型、沙漠型和极地型四种典型类型气溶胶的吸收光学厚度进行了计算统计分析,根据每一种类型气溶胶成分的差异,分析了气溶胶吸收光学厚度随波长及相对湿度变化的规律,建立了四种典型类型气溶胶吸收光学厚度与波长、相对湿度的定标关系。气溶胶吸收光学厚度随波长的幂指数衰减规律并不是在所有波长范围内均满足,不同类型的气溶胶,其适用的范围不同;气溶胶吸收光学厚度随波长和相对湿度的变化主要受气溶胶成分影响,相对湿度的增大会导致气溶胶吸收特性的降低,并会对吸收Angstrom指数造成影响。根据建立的气溶胶吸收光学厚度的定标关系,可由气溶胶激光雷达等设备实测的某一波长的光学参量计算光电系统对应波长、不同相对湿度情况下的光学特性。 相似文献
15.
利用云和气溶胶粒子的光学特性软件包(OPAC)对陆地型、海洋型、沙漠型和极地型四种典型类型气溶胶的吸收光学厚度进行了计算统计分析,根据每一种类型气溶胶成分的差异,分析了气溶胶吸收光学厚度随波长及相对湿度变化的规律,建立了四种典型类型气溶胶吸收光学厚度与波长、相对湿度的定标关系。气溶胶吸收光学厚度随波长的幂指数衰减规律并不是在所有波长范围内均满足,不同类型的气溶胶,其适用的范围不同;气溶胶吸收光学厚度随波长和相对湿度的变化主要受气溶胶成分影响,相对湿度的增大会导致气溶胶吸收特性的降低,并会对吸收Angstrom指数造成影响。根据建立的气溶胶吸收光学厚度的定标关系,可由气溶胶激光雷达等设备实测的某一波长的光学参量计算光电系统对应波长、不同相对湿度情况下的光学特性。 相似文献
16.
本文研究了在实测的南京地区五种气溶胶分布下,大气气溶胶对三波长差分吸收激光雷达(Dual-DIAL)臭氧探测结果的影响,使用波长对266nm,289nm,308nm进行了误差分析。通过对实际气溶胶的误差分析,模拟出在大部分高度上误差最小的C值(为消去后向散射及消光项误差引入的比值)C=1.7,并与传统方法取得的C=23/19进行了对比。讨论了气溶胶分布及含量对C值选取的影响及不同C值下误差随气溶胶变化的规律;分析得出对于本文所使用的气溶胶分布以及波长对,取C=1.7时在气溶胶较均匀时误差接近于零,误差不会大于5%,当气溶胶变化率变高且频繁变化时误差最大可达40%。取C=23/19时误差很稳定,不随气溶胶分布变化,误差高度增加误差减小且小于10%。本文还讨论了不同气溶胶分布下C的选取方法。 相似文献
17.
激光雷达作为一种新型的大气观测工具,可以通过直接探测激光与大气相互作用的光辐射信号来定量地反演大气水平能见度,更好地反映大气对传输于其中激光的衰减作用,从而成为测量大气水平能见度的主要手段。简单介绍了自行研制的国内首台车载式拉曼-米(Raman-Mie)散射激光雷达的结构和技术参数,并利用斜率法从激光雷达的采集数据中反演出大气水平能见度。通过实际观测并与美国Belfort能见度仪的对比试验,显示该激光雷达在探测大气水平能见度方面具有较高的可靠性和准确性,其测量误差小于20 %。 相似文献
18.
南京地区低空雾霾气溶胶的拉曼-瑞利-米激光雷达测量 总被引:1,自引:0,他引:1
利用拉曼-瑞利-米激光雷达对南京北郊雾霾气溶胶进行观测和分析,并和气象预报相比对。2009年12月2日进行了长时间连续的观测实验,分析比较2009年12月2日观测的雾霾激光雷达距离矫正信号和2011年1月10日南京北郊晴空大气边界层气溶胶激光雷达距离矫正信号的区别和特征。实验结果表明:2009年12月2日10:00至19:00观测出现雾霾,激光雷达观测到雾霾出现的时间段和当天南京气象预报相吻合;南京北郊雾霾出现在低空300 m左右,厚度大约为700 m,大气边界层气溶胶出现的高度为1 000 m左右,厚度大约为1 500 m。 相似文献