首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
A novel pH- and temperature-sensitive nanocomposite microgel based on linear Poly(acrylic acid) (PAAc) and Poly(N-isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was synthesized by a two-step method. First, PNIPA microgel was prepared via surfactant-free emulsion polymerization by using inorganic clay as a crosslinker, and then AAc monomer was polymerized within the PNIPA microgel. The structure and morphology of the microgel were confirmed by FTIR, WXRD and TEM. The results indicated that the exfoliated clay platelets were dispersed homogeneously in the PNIPA microgels and acted as a multifunctional crosslinker, while the linear PAAc polymer chains incorporated in the PNIPA microgel network to form a semi-interpenetrating polymer network (semi-IPN) structure. The hydrodynamic diameters of the semi-IPN microgels ranged from 360 to 400 nm, which was much smaller than that of the conventional microgel prepared by using N,N′-methylenebis(acrylamide) (MBA) as a chemical crosslinker, the later was about 740 nm. The semi-IPN microgels exhibited good pH- and temperature-sensitivity, which could respond independently to both pH and temperature changes.  相似文献   

2.
Thermoresponsive colloidal microgels were prepared by polymerisation of N-isopropylacrylamide (NIPAM) with varying concentration of a cross-linking monomer, N,N-methylenebisacrylamide (MBA), in water with either 0.4 or 6.7 mM concentration of an anionic surfactant, sodium dodecylsulphate (SDS). Volume phase transitions of the prepared microgels were studied in D2O by 1H-NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of poly(N-isopropylacrylamide) (PNIPAM) at temperature range 22–50 °C. In addition, microcalorimetry, turbidometry, dynamic light scattering and electrophoretic mobility measurements were used to characterise the aqueous microgels. The results from the different characterisation methods indicated that PNIPAM microgels prepared in 6.7 mM SDS concentration are structurally different compared to their correspondences prepared in 0.4 mM concentration. Increasing MBA concentration in the microgel synthesis appears to increase the structural heterogeneity in both cases of SDS concentration. PNIPAM structures with significantly higher molecular mobilities at temperatures above 35 °C were observed in the microgels prepared in 0.4 mM SDS concentration, as indicated by the 1H NMR relaxation times of different PNIPAM protons. We conclude that the high mobilities measured with NMR at elevated temperatures and also the clearly negative values of zeta potential are in connection to a fairly mobile surface layer with polyelectrolyte nature and a consequent high local lower critical solution temperature.  相似文献   

3.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel based assemblies (aggregates) were synthesized from microgels of various diameters via polymerization of the crosslinker N,N′-methylenebisacrylamide (BIS) in the presence of microgels in solution. We investigated the ability of the respective aggregates to remove the organic, azo dye molecule 4-(2-hydroxy-1-napthylazo) benzenesulfonic acid sodium salt (Orange II) from water at both room and elevated temperatures. The results from the microgel aggregates made from 1.1-μm-diameter [Parasuraman and Serpe. ACS Applied Materials & Interfaces, 2011] microgels were compared to aggregates synthesized from 321-nm and 1.43-μm-diameter microgels. Aggregates made from the same size microgels showed increased uptake efficiency as the concentration of BIS in the aggregates was increased, while for a given BIS concentration, the uptake efficiency increased with increasing microgel size in the aggregate. We attribute this to the “nature” of the aggregates; aggregates have void space between the microgels that can serve as reservoirs for Orange II uptake—the void spaces are hypothesized to increase with larger diameter microgels. By exploiting the thermoresponsive nature of the microgels, and microgel based aggregates, 85.3 % removal efficiencies can be achieved. Finally, all uptake trends for the aggregates, at room temperature, were fit with a Langmuir sorption isotherm model.  相似文献   

4.
A new method has been developed to prepare smart microgels that consist of well-defined temperature-sensitive cores with pH-sensitive shells. The microgels were obtained directly from aqueous graft copolymerization of N-isopropylacrylamide and N,N′-methylenebisacrylamide from water-soluble polymers containing amino groups such as poly(ethyleneimine) and chitosan. The gel diameters ranged from 300 to 400 nm with narrow size distribution. The unique core-shell nanostructures exhibited tuneable responses to pH and temperature.  相似文献   

5.
Polyvinylamine (PVAm) binding (absorption and adsorption) to carboxylated microgels gave colloidally stable, cationic microgels that can be centrifuged, washed, freeze dried, and redispersed in water with no loss in colloidal stability. Because both PVAm and the carboxylated microgels are pH sensitive, changes in microgel swelling and electrophoretic mobility in response to pH change can be positive or negative depending upon pH and the PVAm content of the microgels. For a given PVAm molecular weight, the steady-state saturated mass fraction of bound PVAm in the microgels varied by a factor of four in our experiments. We proposed that the PVAm content at saturation was controlled by the relative rates of the initial attachment of PVAm chains versus the rate of attached chain spreading on and into the microgel structure. This explanation was further supported by a series of quartz crystal microbalance measurements. Finally, PVAm binding to two types of PNIPAM microgels shows general features recently reported for other polyelectrolyte types. Specifically: (1) for surface localized anionic charges on the microgels, the mass fraction of bound PVAm increased with PVAm molecular weight and vice versa; (2) in virtually all conditions, the quantity of adsorbed cationic ammonium groups was much greater than the carboxylate content of the microgel; and (3) sodium chloride additions lowered the mass fraction of bound PVAm.  相似文献   

6.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

7.
Poly(N-isopropylacrylamide) or PNIPAm nanogels with diameter of 50–200 nm were prepared from N-isopropylacrylamide monomer by photopolymerization in the absence of initiator, cross-linker and surfactant. Morphology transition of the nanogels from branch to compact, global one was tuned with NIPAm(N-isopropylacrylamide) concentration in reaction. Reaction mechanism of the nanogels formation was proposed. The yield of prepared nanogels can increased from ca. 20 up to 86% when solution pH varied from neutral to 2. ESR signals confirmed that the existence of H+ in reaction could accelerate the polymerization of NIPAm.  相似文献   

8.
Thermo-responsive microgels are unique stabilizers for stimuli-sensitive Pickering emulsions that can be switched between the state of emulsification and demulsification by changing the temperature. However, directly temperature-triggering the phase inversion of microgel-stabilized emulsions remains a great challenge. Here, a hybrid poly(N-isopropylacrylamide)-based microgel has now been successfully fabricated with tunable wettability from hydrophilicity to hydrophobicity in a controlled manner. Engineered microgels are synthesized from an inverse emulsion stabilized with hydrophobic silica nanoparticles, and the swelling-induced feature can make the resultant microgel behave like either hydrophilic or hydrophobic colloids. Remarkably, the phase inversion of such microgel-stabilized Pickering emulsions can be in situ regulated by temperature change. Moreover, the engineered microgels were capable of stabilizing water-in-oil Pickering emulsions and encapsulation of enzymes for interfacial bio-catalysis, as well as rapid cargo release triggered by phase inversion.

Hybrid poly(N-isopropylacrylamide)-based microgels are templated from inverse Pickering emulsions, and the tunable wettability renders as-prepared emulsions with reversible feature.  相似文献   

9.
The combination of supramolecular chemistry and soft colloids as microgels represents an ambitious way to develop multi-versatile colloidal assemblies. Hereafter, terpyridine-functionalized poly(N-isopropylacrylamide) (PNiPAM) microgel building blocks are shown to undergo an assemble–freeze–disassemble process. The microgel assemblies, which are controlled by monitoring the attractive and repulsive potentials between the soft colloidal particles, are then frozen by forming inter-particle metal–terpyridine bis-complexes upon addition of the metallic cation (such as FeII, CoII). By oxidation of the metal–terpyridine bis-complex links, the aggregates open up, which is due to the complex dissociation releasing the connected particles in the form of single microgels. We extended our work to the development of 1D filaments and 2D membranes materials made of soft particles connected via supramolecular chemistry.  相似文献   

10.
In this work, we designed copolymer microgels by the copolymerisation of N-vinylcaprolactam (VCL) and two acrylamides (N-isopropylacrylamide (NIPAAm) and N-isopropylmethacrylamide (NIPMAAm)) under precipitation conditions in aqueous phase. In synthesis protocols, the ratio between monomers was varied from 1:5 to 5:1 mol/mol. By NMR and Raman spectroscopy, we determined the chemical composition of PVCL/NIPAAm and PVCL/NIPMAAm copolymer microgels reflecting the initial monomer ratio in the reaction mixture. The hydrodynamic radii of PVCL/NIPAAm microgels are around 375 nm (at 25 °C) and do not vary with the copolymer composition. On the contrary, for PVCL/NIPMAAm microgels, the size decreases from 450 to 250 nm with an increase of the VCL amount in copolymer structure. The heterogeneity of the microgel structure in terms of the distribution of the monomer units was probed by 1H transverse magnetization relaxation NMR, showing that the VCL, NIPAAm and NIPMAAm units are unorderly distributed in the colloidal networks. The investigation of volume phase transition temperature (VPTT) for copolymer microgels was performed using dynamic light scattering, NMR and differential scanning calorimetry. It has been found that PVCL/NIPAAm microgels show VPTT around 35 °C independently from the copolymer composition; however, PVCL/NIPMAAm particles exhibit a nonlinear increase of VPTT from 34 to 45 °C as the NIPMAAm fraction in copolymer structure increases.  相似文献   

11.
Tunable gating polymeric nanostructured membrane with excellent water permeability and precise molecular separation is highly advantageous for smart nanofiltration application. Polymeric nanostructures such as microgels with functionalizable cross-linkable moieties can be an excellent choice to construct membranes with a thin separation layer, functionality, and tunable transport properties. In the present work, we prepared switchable anti(bio)fouling membranes using zwitterionically functionalized antibacterial thermoresponsive aqueous core-shell microgels with a thin separation layer for controlled filtration and separation applications. The microgels were synthesized using a one-step graft copolymerization of poly(N-isopropylacrylamide) and polyethyleneimine (PEI) followed by zwitterionization of free amine groups of PEI chains with 1,3-propane sultone. Microgel synthesis and zwitterionization were confirmed by spectroscopic and elemntal analysis. The obtained microgels were thoroughly characterized to analyze their thermoresponsive behavior, morphology, charge, and antibacterial properties. After that, characterizations were performed to elucidate the surface properties, water permeation, rejection, and flux recovery of the microgel membranes prepared by suction filtration over a track-etched support. It was observed that zwitterionic membrane provides better hydrophilicity, lower bovine serum albumin (BSA) adsorption, and desirable antimicrobial activity. The pure water permeability was directly related to the microgel layer thickness, applied pressure, and temperature of the feed solution. The novel nanostructured membrane leads to an excellent water permeance with a high gating ratio, high flux recovery rate with low irreversible fouling, better rejection for various dyes, and foulant. Most importantly, the long-term performance of the membrane is appreciable as the microgel layer remains intact and provides excellent separation up to a longer period. Owing to easy preparation and well control over thickness, the zwitterionic microgel membranes constitute unique and interactive membranes for various pressure-driven separation and purification applications.  相似文献   

12.
We demonstrate that the volume phase transition temperature (VPTT) of copolymer microgel particles made from N‐isopropylacrylamide (NIPAm) and methacryloyl hydrazide (MH) can be tailored in a reversible manner upon the reaction of the hydrazide functional groups with aldehydes. The microgels were synthesized by precipitation polymerization in water. Due to the water‐soluble nature of the MH monomer, the VPTT at which the microgel particles contract shifts to higher values by increasing the incorporated amounts of methacryloyl hydrazide from 0 to 5.0 mol %. The VPTT of the copolymer microgel dispersions in water can be fine‐tuned upon addition of hydrophobic/hydrophilic aldehydes, which react with the hydrazide moiety to produce the hydrazone analogue. This hydrazone formation is reversible, which allows for flexible, dynamic control of the thermo‐responsive behavior of the microgels. The ability to “switch” the VPTT was demonstrated by exposing hydrophilic streptomycin sulfate salt incubated microgel particles to an excess of a hydrophobic aldehyde, that is benzaldehyde. The temperature at which these microgels contracted in size upon heating was markedly lowered in these aldehyde exchange experiments. Transformation into benzaldehyde hydrazone derivatives led to assembly of the microgel particles into small colloidal clusters at elevated temperatures. This control of supracolloidal cluster formation was also demonstrated with polystyrene particles which had a hydrazide functionalised microgel shell. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1745–1754  相似文献   

13.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalons are constructed by depositing thin Au layers (mirrors) on either side of a planar microgel layer. When immersed in water, the microgel layer swells and the etalon exhibits visual color. The thermoresponsivity of the pNIPAm-based microgels allows the Au mirror spacing, and hence the device color, to be dynamically modulated. Necessarily, when the mirror spacing is modulated solvent in the microgel layer must be expelled to the surroundings. Previously, we determined that the etalon deswelling kinetics depended critically on the thickness of the Au layer covering the microgels. Here, we report on solvent exchange kinetics. We found that the time required for solvent entry into the microgel layer is much longer than solvent exit. In addition, the rate was found to again depend critically on the thickness of the Au layer covering the microgel layer; thicker Au layers corresponded to slower solvent exchange kinetics.
Figure
Solvent entering poly (N-isopropylacrylamide) microgel-based etalons is significantly slower than solvent exit.  相似文献   

14.
Microgels consisting of poly-N,N-diethylacrylamide (PDEAAM) and copolymer microgels consisting of N,N-diethylacrylamide-co-N-isopropylacrylamide (PDEAAM-co-PNIPAM) have been synthesized via free radical polymerizations. The volume phase transition of the microgels in aqueous solution was investigated by means of dynamic light scattering. All samples revealed a volume phase transition upon heating and the size change was fully reversible. An unusual dependence of transition temperature on the composition of the copolymer microgels was observed and samples were obtained with a transition temperature that was lower than that of both corresponding homopolymer particles. This synergistic behavior could be caused by strong hydrogen bonding between the mono- and the disubstituted acrylamide repeating units at nearly equimolar composition of the microgel.  相似文献   

15.
Nanostructured adhesive layers were prepared by adsorbing and/or grafting polyvinylamine (PVAm) onto carboxylated poly(N-isopropylacrylamide) (PNIPAM) microgels that were then assembled between layers of wet oxidized cellulose. The wet delamination force was measured as functions of PVAm content, PVAm molecular weight, coverage (mass adhesive/joint area), and the distribution of carboxyl groups in the PNIPAM microgels. The use of microgels is attractive because simple physical adsorption onto the cellulose surfaces before lamination gives much higher adhesive content and strength compared to the corresponding adsorbed linear PVAm. Wet adhesion increased with PVAm content in the microgels and the quantity of microgels in the joint whereas adhesion was independent of PVAm molecular weight. Physical adsorption of the PVAm onto/into the microgels gave the same adhesion as covalently coupled PVAm. Finally, the roles of microgel diameter, elasticity, and coverage were simulated by a simple peel adhesion model in which the microgels were treated as ideal springs.  相似文献   

16.
A kind of novel fluorine-containing pH-responsive core/shell microgels poly(DMAEMA-co-HFMA)-g-PEG were prepared via surfactant-free emulsion polymerization using water as the solvent. The well-defined chemical structure of the copolymers was characterized by FTIR, 1H-NMR, 19F-NMR, and elemental analysis. The microgel particles were studied by florescence probe technique, dynamic light scattering, and zeta potential measurement; the microgels displayed a significant pH-responsive behavior. Furthermore, the cytotoxicity assay indicated that the copolymer microgels had low toxicity, and 5-FU-loaded microgels offered a certain killing potency against cancer cells. In addition, the drug loading and in vitro drug release demonstrated that 5-FU was successfully incorporated into polymeric microgels, and the drug-loaded microgels showed a marked pH-dependent drug release behavior. This study suggests that the poly(DMAEMA-co-HFMA)-g-PEG microgels play an important role in the release mechanism stimulated by the change in the pH and have potential applications as a controlled drug release carrier.  相似文献   

17.
Effects of some sodium salts (NaCl, NaClO3, and NaSCN) in the Hofmeister series on deswelling and temperature-induced aggregation behavior of microgels of poly(N-isopropylacrylamide) (PNIPAAM) and PNIPAAM-co-PAA with attached poly(acrylic acid) moieties were investigated with the aid of turbidimetry and dynamic light scattering. Addition of salt in the concentration range 0.1–0.5?M generated aggregation of the PNIPAAM microgel particles at elevated temperatures, but it was no distinct difference between chaotropic and kosmotropic anions. In contrast, the flocculation behavior at high temperatures for PNIPAAM-co-PAA revealed a prominent influence of salinity and type of anion on the formation of aggregates. The aggregation transition was shifted to the highest temperature for the most chaotropic anion (SCN?), and the aggregation transition at the same salt concentration is consistent with the typical Hofmeister series. The turbidity results from the PNIPAAM-co-PAA microgels disclosed a two-step transition for the considered anions, and both a low and high temperature change in the turbidity data was observed. The high-temperature transition followed the Hofmeister series.  相似文献   

18.
Poly(N-isopropylacrylamide) (PNIPAM)-based microgels covered with hydrophobic but water-permeable shell were used for modification of a hydrophilic substrate with the aim to provide a ??contraphilic?? wetting behaviour, namely, to make the surface more hydrophobic in water environment (polar medium) than in dry state in air (non-polar medium). Bottom-up approach has been applied for a stepwise preparation of a structured two-component surface. Loosely packed microgels self-organised into quasiperiodic arrays were chemically grafted to the hydrophilic, functionalised substrate. Afterwards, a surface-initiated polymerisation of isoprene was performed selectively from microgels making them hydrophobic. The surface was found to be water-sensitive, as observed by in situ AFM measurements. The surface fraction of the hydrophobic component increased from 13% in the dry state up to 25% in water due to swelling of the microgels. However, small contraphilic effect was recorded by water contact angle measurements because of a moderate lateral swelling of the core-shell microgels and due to a fast swelling of the microgels already upon the measurements.  相似文献   

19.
The influence of the cross-link density on rheological properties of thermosensitive microgels was investigated. The temperature-sensitive hydrogel particles consisted of poly (N-isopropylacrylamide) (PNiPAM) chemically cross-linked with several different molar ratios of N,N′-methylenebisacrylamide. The variation of cross-link density leads to soft spheres that possess a different particle interaction potential and a different swelling ratio. With increasing temperature the microgel particles decrease in size and with it the effective volume fraction, which leads to strong changes in rheological properties. The relative zero-shear viscosity and the plateau modulus at different temperatures superpose to mastercurves when plotted versus the effective volume fraction. Up to an effective volume fraction of 0.5 the microgels behaved like hard spheres and the maximum volume fraction, as determined from the divergence of the zero-shear viscosity, was mainly dominated by the polydispersity of the spheres and not by the cross-link density. The plateau modulus, on the other hand, revealed soft-sphere behavior and the interaction potential became softer with decreasing cross-linker content. Received: 15 December 1999 Accepted: 15 February 2000  相似文献   

20.
Compared are two approaches for the biotinylation of poly(N-isopropylacrylamide-co-vinylacetic acid) microgels, 300-nm diameter, water swollen particles with a corona of carboxyl groups. The biotinylated microgels are a platform for bioactive water-based ink. Streptavidin binding was measured as a function of biotin density, and the results were interpreted with a new model that predicts the minimum local density of biotins required to capture a streptavidin. An amino-polyethylene glycol derivative of biotin gave higher biotin contents than a biotin hydrazide. However, the streptavidin content versus biotin content results for both biotin derivatives fell on the same master curve with maximum biotin coverage of 0.11?mg of bound streptavidin per milligram of biotinylated microgel. Exclusion experiments showed that streptavidin was too big to penetrate the cross-linked microgel structure; thus, the conjugated streptavidin was restricted to the microgel surface. The colloidal stability of the microgels was preserved, and the biotinylated products showed good hydrolytic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号