首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We studied a rapid, sensitive and selective amperometric sensor for determination of hydrogen peroxide by electrodeposited Ag NPs on a modified glassy carbon electrode (GCE). The modified GCE was constructed through a step by step modification of magnetic chitosan functional composite (Fe3O4–CH) and high-dispersed silver nanoparticles on the surface. The resulted Ag@Fe3O4–CH was characterized by various analytical methods including Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and cyclic voltammetry. The proposed sensor employed Ag@Fe3O4–CH/GCE as the working electrode with a linear current response to the hydrogen peroxide concentration in a wide range from 0.01 to 400 µM with a low limit of detection (LOD = 0.0038 µM, S/N = 3). The proposed sensor showed superior reproductivity, sensitivity and selectivity for the detection of hydrogen peroxide in environmental and clinical samples.  相似文献   

2.
In this paper, a novel and convenient electrochemical sensor for detection of methimazole (MMI) by differential pulse voltammetry is presented. This sensor was fabricated by dripping well-dispersed MWCNTs onto glassy carbon electrode (GCE) surface, and then poly-l-Arg (P-L-Arg) film was deposited on the electrode. Finally, Cu nanoparticles (CuNPs) were electrochemically deposited on the resulting film by using cyclic voltammetry to prepare CuNPs-P-L-Arg/MWCNTs/GCE. The surface morphology of the electrodes has been studied by scanning electron microscopy. Studies reveal that the irreversible oxidation of MMI was highly facile on CuNPs-P-L-Arg/MWCNTs/GCE. The dynamic detection range of this sensor to MMI was 5.2–50 µM, with the detection limit of 2 µM. A new voltammetric method for determination of MMI was erected and shows good sensitivity and selectivity, very easy surface update and good stability. The analytical application of the modified electrode is demonstrated by determining MMI in biological fluids (serum).  相似文献   

3.
A film consisting of polyaniline and single-walled carbon nanotubes was electro-polymerized on a platinum electrode in a room temperature ionic liquid. This resulted in a selective and non-enzymatic electrode for sensing hydrogen peroxide (HP). The morphology of the sensor film was characterized by scanning electron microscopy, cyclic voltammetry, and chronoamperometry. The composite film synthesized in an ionic liquid provided an electrode with enhanced selectivity and excellent stability. The electrode exhibited good electrocatalytic properties in terms of detection of HP, with a linear range from 5 µM to 1 mM, a detection limit of 1.2 µM, and a response time of around 4 s.  相似文献   

4.
Diphenylamine (DPA) monomers have been electropolymerized on the amino‐functionalized multiwalled carbon nanotube (AFCNT) composite film modified glassy carbon electrode (GCE) by cyclic voltammetry (CV). The surface morphology of PDPA‐AFCNT was studied using field‐emission scanning electron microscopy (FE‐SEM). The interfacial electron transfer phenomenon at the modified electrode was studied using electrochemical impedance spectroscopy (EIS). The PDPA‐AFCNT/GCE represented a multifunctional sensor and showed good electrocatalytic behavior towards the oxidation of catechol and the reduction of hydrogen peroxide. Rotating‐disk electrode technique was applied to detect catechol with a sensitivity of 1360 µA mM?1 cm?2 and a detection limit of 0.01 mM. Amperometric determination of hydrogen peroxide at the PDPA‐AFCNT film modified electrode results in a linear range from 10 to 800 µM, a sensitivity of 487.1 µA mM?1 cm?2 and detection limit of 1 µM. These results show that the nano‐composite film modified electrode can be utilized to develop a multifunctional sensor.  相似文献   

5.
Gold‐copper alloy nanoparticles (AuCu NPs) were electrodeposited on a graphene – ionic liquid composite film (EGN‐IL). The AuCu NPs showed high electrocatalysis to the oxidation of hydrazine with a catalytic reaction rate constant of about 5.0×104 mol/Ls. In phosphate buffer solutions (pH 6.8) the oxidation current of hydrazine at 0.15 V (vs. SCE) at the resulting electrode (AuCu? EGN‐IL/GCE) was linear to its concentration in the range of 0.2–110 µM with a sensitivity of 56.7 µA/mM, and the detection limit was 0.1 µM (S/N=3). The electrode was successfully applied to the determination of waste water.  相似文献   

6.
Qi Wang  Yanbin Yun 《Mikrochimica acta》2013,180(3-4):261-268
We have developed a nonenzymatic sensor for hydrogen peroxide (HP) that is based on a new kind of nanocomposite consisting of silver nanoparticles (AgNPs) electrodeposited on a basic film of a poly(ionic liquid) containing graphene. The nanocomposite was characterized by scanning electron microscopy, energy dispersive X-ray studies, cyclic voltammetry, and chronoamperometry. The AgNPs on the basic composite film provide the electrode with enhanced sensitivity in that the signal obtained for HP is 10-fold improved in the best case. The sensor exhibits good linear response in the 0.1 μM to 2.2 mM HP concentration range, and the detection limit is 0.05 μM (at S/N?=?3).   相似文献   

7.
Platinum nanoparticles–reduced graphene oxide composite-modified glassy carbon electrode (PtNPs–rGO/GCE) was developed as a simple, selective and sensitive electrochemical sensor for determination of picric acid (PA). Cyclic voltammogram (CV) of PA showed three well-defined irreversible reduction peaks at the potentials of ?0.43, ?0.57 and ?0.66 V versus Ag/AgCl. In this work, the interference effect of other nitrophenol compounds (NPhCs) was significantly reduced by appropriate adjusting of pH. Square wave voltammetry was used for quantification of PA in the range of 5–500 µM (1.15–115 mg L?1) with practical detection limit of 1 µM (0.23 mg L?1). The proposed sensor was successfully applied for the determination of PA in two natural water samples.  相似文献   

8.
In this work, a glassy carbon electrode (GCE) modified with poly (diphenylamine)/multi-walled carbon nanotubes-β-cyclodextrin (PDPA/MWCNT-β-CD) film was constructed and used for the determination of 4-nitrophenol (4-NP). Diphenylamine was successfully electropolymerised onto MWCNT-β-CD-modified GCE by cyclic voltammetry in monomer solution and 5 mol L?1 H2SO4. The surface morphology of PDPA/MWCNT-β-CD film was characterised using scanning electron microscopy and electrochemical impedance spectroscopy. After adsorption of 4-NP on PDPA/MWCNT-β-CD at 0.2 V for 150 s, it showed a well-defined reduction peak in phosphate buffer solution at pH = 7. The PDPA/MWCNT-β-CD film enhanced the reduction peak current due to the complex formation between β-CD and 4-NP, presence of conductive polymer film as electron transfer mediator and also ability of MWCNTs for strong adsorptive and catalytic effect. Peak current increased linearly with 4-NP concentration in the range of 0.1 to 13.9 µg L?1. The detection limit was obtained as 0.02 µg L?1, which is better than other reported detection limits for the determination of 4-NP. The results showed that modified electrode has good sensitivity and selectivity. This sensor was used for the determination of 4-NP in water samples.  相似文献   

9.
In this study, a new strategy for the preparation of a modified glassy carbon electrode (GCE) based on a novel nano-sensing layer for the electrocatalytic oxidation of hydrazine was suggested. The suggested nano-sensing layer was prepared with the immobilisation of silver nanoparticles (AgNPs) on ordered mesoporous carbon. The morphology and properties of the prepared nanocomposite on the surface of GCE were characterised by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, X-ray powder diffraction and electrochemical impedance spectroscopy. The electrochemical response characteristics of the modified electrode towards the target analyte were investigated by cyclic voltammetry. Under optimal experimental conditions, the suggested modified GCE showed excellent catalytic activity towards the electro-oxidation of hydrazine (pH = 7.5) with a significant increase in anodic peak currents in comparison with the unmodified GCE. By differential pulse voltammetry and amperometric methods, the suggested sensor demonstrated wide dynamic concentration ranges of 0.08–33.8 µM and 0.01–128 µM with the detection limit (S/N = 3) of 0.027 and 0.003 µM for hydrazine, respectively. The suggested hydrazine sensor was successfully applied for the highly sensitive determination of hydrazine in different real samples with satisfactory results.  相似文献   

10.
A stable sensor for the determination of gallic acid (GA) and caffeic acid (CA) was fabricated by electrodeposition of Zn‐Al‐NO3 layered double hydroxide film on a glassy carbon electrode (LDHf/GCE). A sensitive electrochemical method was achieved for the determination of GA and CA in a phosphate buffer solution (pH 3). The differential pulse voltammetry response of the LDHf/GCE to GA has a linear concentration range from 4 µM to 600 µM with a correlation coefficient of 0.9985 and the calculated detection limit of 1.6 µM at a signal‐to‐noise ratio of 3. The differential pulse voltammetry response of the LDHf/GCE to CA has a linear concentration range from 7 µM to 180 µM with a correlation coefficient of 0.9969 and the calculated detection limit of 2.6 µM at a signal‐to‐noise ratio of 3. The constructed sensor was applied to the determination of GA in commercial green tea samples.  相似文献   

11.
《中国化学会会志》2017,64(7):813-821
Zinc oxide nanoparticles (ZnO NPs ) were prepared by a simple, convenient, and cost‐effective wet chemical method using the biopolymer starch. The prepared ZnO NPs were characterized by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray (EDX ), Fourier transform infrared (FT‐IR ), and UV ‐visible spectroscopic techniques. The average crystallite size calculated from XRD data using the Debye–Scherer equation was found to be 15 nm. The electrochemical behavior of caffeine (CAF ) was studied using a glassy carbon electrode (GCE ) modified with zinc oxide nanoparticles by cyclic voltammetry (CV ) and differential pulse voltammetry (DPV ). Compared to unmodified GCE , ZnO NPs‐ modified GCE (ZnO NPs MGCE ) exhibited excellent electrocatalytic activity towards CAF oxidation, which was evident from the increase in the peak current and decrease in the peak potential. Electrochemical impedance study suggested that the charge‐transfer capacity of GCE was significantly enhanced by ZnO NPs . The linear response of the peak current on the concentrations of CAF was in the range 2–100 μM . The detection limit was found to be 0.038 μM. The proposed sensor was successfully employed for the determination of CAF in commercial beverage samples.  相似文献   

12.
A modified glassy carbon electrode with a film of nano diamond? graphite nano mixture decorated with Ag nanoparticles (AgNPs? NDG/GCE) was constructed and used for sensitive voltammetric determination of ceftizoxime (CFX). Morphology of AgNPs? NDG/GCE has been examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Experimental variables such as deposited amount of the modifier suspension, pH of the supporting electrolyte and accumulation potential and time were optimized by monitoring of CV and LSV responses of CFX. The results illustrate that AgNPs? NDG/GCE exhibits an excellent electrocatalytic effect in the electro‐oxidation of CFX that leads to a considerable improvement in the corresponding anodic peak current. This also allows the development of a highly sensitive voltammetric sensor for the determination of CFX in pharmaceutical and clinical samples. Under the optimum conditions, the modified electrode showed a linear response to the concentration of CFX in the range of 0.02–7 µM with detection limit of 6 nM. The prepared modified electrode has some remarkable electrochemical properties such as simple preparation, high sensitivity, excellent repeatability and reproducibility and long‐term stability.  相似文献   

13.
An electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) has been constructed by copolymerizing melamine monomer and Ag ions on a glassy carbon electrode (GCE) with cyclic voltammetry. The poly-melamine and nano Ag formed a hybridized film on the surface of the GCE. The morphology of the film was characterized by scanning electron microscope. The electrochemical and electrocatalytic properties of this film were characterized by cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry (SWV). In 0.1 M phosphate buffer solution (pH 4.5), the modified electrode resolved the electrochemical response of DA, UA, G, and A into four well-defined voltammetric oxidation peaks by SWV; the oxidation peak current of DA, UA, G, and A increased 13-, 6-, 7-, and 9-fold, respectively, compared with those at the bare GCE and the SWV peak currents of DA, UA, G, and A with linear concentrations in the ranges of 0.1–50, 0.1–50, 0.1–50, and 0.1–60 μM, respectively. Based on this, a method for simultaneous determination of these species in mixture was setup. The detection limits were 10 nM for DA, 100 nM for UA, 8 nM for G, and 8 nM for A.  相似文献   

14.
We fabricated a novel hierarchical composite mat composed of electrospun cellulose nanofibers decorated with Ag‐doped ZnO (Ag‐ZnO) nanoparticles and further demonstrated its potential application as the efficient laccase (Lac) biosensor substrate material. The cyclic voltammograms revealed that the Ag‐ZnO/cellulose nanofibrous mat provided an excellent microenvironment for Lac immobilization and benefited direct electron transfer of Lac. The fabricated Lac/Ag‐ZnO/cellulose/GCE exhibited a highly sensitive detection of catechol with a wide linear range from 0.995 to 811 µM and a low detection limit of 0.205 µM. The results indicated that Ag‐ZnO/cellulose nanofibers were the promising nanostructured materials for the construction of different biosensors.  相似文献   

15.
DPPH (2,2-diphenyl-1-picrylhydrazil), a free radical-containing organic compound, is used widely to evaluate the antioxidant properties of plant constituents. Here, we report an efficient electroactive DPPH molecular system with excellent electrocatalytic sensor properties, which is clearly distinct from the traditional free radical-based quenching mechanism. This unusual molecular status was achieved by the electrochemical immobilization of graphene oxide (GO)-stabilized DPPH on a glassy carbon electrode (GCE). Potential cycling of the DPPH adsorbed-GCE/GO between ??1 and 1 V (Ag/AgCl) in a pH 7 solution revealed a stable and well-defined pair of redox peaks with a standard electrode potential, E0′?=?0?±?0.01 V (Ag/AgCl). Several electrochemical characterization studies as well as surface analysis of the GCE/GO@DPPH-modified electrode by transmission electron microscopy, Raman, and infrared spectroscopy collectively identified the imine/amine groups as the redox centers of the electroactive DPPH on GO. The use of different carbon-supports showed that only oxygen-functionalized GO and MWCNTs could provide major electroactivity for DPPH. This highlights the importance of a strong hydrogen-bonded network structure assisted by the concomitant π-π interactions between the organic moiety and oxygen function groups of carbon for the high electroactivity and stability of the GCE/GO@DPPH-NH/NH2-modified electrode. The developed electrode exhibited remarkable performance towards the electrocatalytic oxidation of NADH at 0 V (Ag/AgCl). The amperometric i-t sensing of NADH showed high sensitivity (488 nA μM?1 cm?2) and an extended linear range (50 to 450 μM) with complete freedom from several common biochemical/chemical interferents, such as ascorbic acid, hydrazine, glucose, cysteine, citric acid, nitrate, and uric acid.  相似文献   

16.
Nanoparticles (NPs) consisting of an Fe3O4 core and a thin gold shell (referred to as Au@Fe3O4 NPs) were self-assembled on the surface of a glassy carbon electrode modified with ethylenediamine. Following adsorption of hemoglobin, its interaction with the NPs was studied by UV–Vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Stable and well-defined redox peaks were observed at about ?350 mV and ?130 mV in pH 6.0 buffer. The modified electrode was used as a mediator-free sensor for hydrogen peroxide (H2O2), with a linear range from 3.4 µM to 4.0 mM of H2O2, and with a 0.67 µM detection limit (at an S/N of 3). The apparent Michaelis-Menten constant is 2.3 mM.  相似文献   

17.
In this work, an electrochemical sensor based on a cyclodextrin‐graphene hybrid nanosheets modified glassy carbon electrode (CD‐GNs/GCE) was proposed for the ultrasensitive determination of doxorubicin and methotrexate. The peak currents of doxorubicin and methotrexate on the CD‐GNs/GCE increased 26.5 and 23.7 fold, respectively, compared to the results obtained on the bare GCE. Under optimized conditions, the linear response ranges for doxorubicin and methotrexate are 10 nM–0.2 µM and 0.1 µM–1.0 µM, with detection limits of 0.1 nM and 20 nM, respectively. The sensor showed the advantages of simple preparation, low cost, high sensitivity, good stability and reproducibility. These properties make the prepared sensor a promising tool for the determination of trace amounts of doxorubicin and methotrexate in biological, clinical and pharmaceutical fields.  相似文献   

18.
A glucose sensor composed of silver nanoparticles decorated carbon nanotubes (Ag‐NPs/CNTs) prepared by ion implantation is described. Ag‐NPs with size of 2–4 nm are uniformly distributed in the CNTs after ion implantation. This process provides a strong combination between Ag‐NPs and CNTs and can effectively prevent the Ag‐NPs from aggregation. A linear range of 125 µM to 10 mM towards glucose determination was obtained. The Ag‐NPs/CNTs electrode shows minimal interferences from co‐existence species such as uric acid and ascorbic acid and an antibacterial rate of 94 % towards E. coli.  相似文献   

19.
Electrocatalytic oxidation of sulfide ion on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNTs) and a copper (II) complex was investigated. The Cu(II) complex was used due to the reversibility of the Cu(II)/Cu(III) redox couple. The MWCNTs are evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on Cu(II) complex adsorbed on MWCNTs immobilized on the surface of GCE. The modified GCE was applied to the selective amperometric detection of sulfide at a potential of 0.47 V (vs. Ag/AgCl) at pH 8.0. The calibration graph was linear in the concentration range of 5 µM–400 µM; while the limit of detection was 1.2 µM, the sensitivity was 34 nA µM?1. The interference effects of SO3 2?, SO4 2?, S2O3 2?, S4O6 2?, Cysteine, and Cystein were negligible at the concentration ratios more than 40 times. The modified electrode is more stable with time and more easily restorable than unmodified electrode surface. Also, modified electrode permits detection of sulfide ion by its oxidation at lower anodic potentials.   相似文献   

20.
In this paper, an electrochemical application of bismuth film modified glassy carbon electrode for azo-colorants determination was investigated. Bismuth-film electrode (BiFE) was prepared by ex-situ depositing of bismuth onto glassy carbon electrode. The plating potential was ?0.78 V (vs. SCE) in a solution of 0.15 mg mL?1 Bi(III) and 0.05 mg mL?1 KBr for 180 s. In the next step, a thin film of chitosan was deposited on the surface of bismuth modified glassy carbon electrode, thus the bismuth-chitosan thin film modified glassy carbon electrode (Bi-CHIT/GCE) was fabricated and compared with bare GCE and bismuth modified GCE. Azo-colorants such as Sunset Yellow and Carmoisine were determined on these electrodes by differential pulse voltammetry. Due to overlapping peaks of Sunset Yellow and Carmoisine, simultaneous determination of them is not possible, so net analyte signal standard addition method (NASSAM) was used for this determination. The results showed that coated chitosan can enhance the bismuth film sensitivity, improve the mechanical stability without caused contamination of surface electrode. The Bi-CHIT/GC electrode behaved linearly to Sunset Yellow and Carmoisine in the concentration range of 5×10?6 to 2.38×10?4 M and 1×10?6 to 0.41×10?4 M with a detection limit of 10 µM (4.52 µg mL?1) and 10 µM (5.47 µg mL?1), respectively   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号