首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
IntroductionThefluiddynamicsofbloodcyclesystemplayanimportantroleinthepathogenesisofatherosclerosis.ThephysiologicalanatomyfoundthattheatherosclerosisappearsoftenatthebifurcationorcurvedflowareatoallkindsofRefs.[1 ,2 ] .Theshearstressvariesgreatlyinthoseareaandinfluencesthemacromoleculartransportacrossthebloodwall[3,4].Thus ,theinvestigationoftheflowandmacromoleculartransportinthesecomplexbloodvesselaandthecorrelationbetweenthemareinterestingtoresearchers.Intheseaspect,Liepschstudiedtheflowi…  相似文献   

2.
The problem of the laminar boundary layer formed on the surface of a semiinfinite plate with a perpendicular semi-infinite circular cylinder in a uniform steady incompressible flow normal to the leading edge is considered. Near its sharp edge the plate has a stationary part and, located at a finite distance further downstream, a part of the surface moving downstream at a constant velocity. The first-order boundary layer equations are solved numerically by an implicit finite-difference method. The effect of the moving wall on the variation of the dimensions of the separation zone ahead of the obstacle over a broad range of the governing parameters and flow characteristics is investigated. The flow in the laminar boundary layer on the surface of a plate ahead of such an obstacle was calculated in [1, 2] without motion of the wall. Data on the structure of the separated flow are given in [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 49–53, November–December, 1990.  相似文献   

3.
This paper presents a computational study of the two-dimensional particle-laden flow developments of bronze particle clouds in the accelerated flow behind a moving normal shock. Particle clouds with a particle volume concentration of 4% are arranged initially in a rectangular, triangular and circular shape. Simulations are performed with a recently developed high-order resolution Eulerian–Lagrangian method that approximates the Euler equations governing the gas dynamics with the improved high order weighted essentially non-oscillatory (WENO-Z) scheme, while individual particles are traced in the Lagrangian frame using high-order time integration schemes. Reflected shocks form ahead of all the cloud shapes. The detached shock in front of the triangular cloud is weakest. At later times, the wake behind the cloud becomes unstable, and a two-dimensional vortex-dominated wake forms. Separated shear layers at the edges of the clouds pull particles initially out of the clouds that are consequently transported along the shear layers. Since flows separated trivially at sharp corners, particles are mostly transported out of the cloud into the flow at the sharp front corner of the rectangular cloud and at the trailing corner of the triangular cloud. Particles are transported smoothly out of the circular cloud, since it lacks sharp corners. At late times, the accelerated flow behind the running shock disperses the particles in cross-stream direction the most for the circular cloud, followed by the rectangular cloud and the triangular cloud.  相似文献   

4.
A numerical analysis of flow and concentration fields of macromolecules in a, slightly curved blood vessel was carried out. Based on these results, the effect of the bifurcation of a flow on the mass transport in a curved blood vessel was discussed. The macromolecules turned out to be easier to deposit in the inner part of the curved blood vessel near the critical Dean number. Once the Dean number is higher than the critical number, the bifurcation of the flow appears. This bifurcation can prevent macromolecules from concentrating in the inner part of the curved blood vessel. This result is helpful for understanding the possible correlations between the blood dynamics and atherosclerosis. The project supported by National Natural Science Foundation of China (10002003), JSPS Postdoctoral Fellowship for Foreign Researcher and Foundation for University Teachers, the Ministry of Education  相似文献   

5.
The singularities of the boundary layer equations and the laminar viscous gas flow structure in the vicinity of the convergence plane on sharp conical bodies at incidence are analyzed. In the outer part of the boundary layer the singularities are obtained in explicit form. It is shown that in the vicinity of a singularity a boundary domain, in which the flow is governed by the shortened Navier-Stokes equations, is formed; their regular solutions are obtained. The viscous-inviscid interaction effect predominates in a region whose extent is of the order of the square root of the boundary layer thickness, in which the flow is described by a two-layer model, namely, the Euler equations in the slender-body approximation for the outer region and the three-dimensional boundary layer equations; the pressure is determined from the interaction conditions. On the basis of an analysis of the solutions for the outer part of the boundary layer it is shown that interaction leads to attenuation of the singularities and the dependence of the nature of the flow on the longitudinal coordinate, but does not make it possible to eliminate the singularities completely.  相似文献   

6.
Numerical results are presented for an oscillating viscous flow past a square cylinder with square and rounded corners and a diamond cylinder with square corners at Keulegan–Carpenter numbers up to 5. This unsteady flow problem is formulated by the two-dimensional Navier–Stokes equations in vorticity and stream-function form on body-fitted coordinates and solved by a finite-difference method. Second-order Adams-Bashforth and central-difference schemes are used to discretize the vorticity transport equation while a third-order upwinding scheme is incorporated to represent the nonlinear convective terms. Since the vorticity distribution has a mathematical singularity at a sharp corner and since the force coefficients are found in experiments to be sensitive to the corner radius of rectangular cylinders, a grid-generation technique is applied to provide an efficient mesh system for this complex flow. Local grid concentration near the sharp corners, instead of any artificial treatment of the sharp corners being introduced, is used in order to obtain high numerical resolution. The elliptic partial differential equation for stream function and vorticity in the transformed plane is solved by a multigrid iteration method. For an oscillating flow past a rectangular cylinder, vortex detachment occurs at irregular high frequency modes at KC numbers larger than 3 for a square cylinder, larger than 1 for a diamond cylinder and larger than 3 for a square cylinder with rounded corners. The calculated drag and inertia coefficients are in very good agreement with the experimental data. The calculated vortex patterns are used to explain some of the force coefficient behavior.  相似文献   

7.
The present work deals with the compressible flow of nitrogen gas inside microtubes ranging from 30 to 500 μm and with different values of the surface roughness (<1%), for different flow regimes. The first part of the work is devoted to a benchmark of friction factor data obtained at DIENCA (University of Bologna) and the ENEA laboratories, using fused silica pipes of 50 and 100 μm. Data overlapping is excellent thus evidencing how the agreement of the experimental data with the classic theory is independent of the measurement system. The second part of the work demonstrates that classic correlations can predict friction factor in laminar flow without revealing any evident influence of the surface roughness. The laminar-to-turbulent transition starts for Reynolds number not lower than 2000 for smooth pipes, while tending to larger values (3200–4500) for rough pipes. Anyway, contrarily to other available results, no dependence of the critical Reynolds number on the L/D has been observed. Changes in the flow regime have been found of the sharp and smooth type, like for larger pipes; smooth transition looks typical of smooth pipes while the sharp transition in the flow pattern is associated with rough pipes. In the fully developed turbulent regime, obtained for both smooth and rough pipes, an agreement between experimental data and the Blasius correlation has been verified for smooth pipes, while for rough pipes the agreement with predictions given by the Colebrook equation is rather modest.  相似文献   

8.
Noncircular jets in combustion systems   总被引:1,自引:0,他引:1  
Combustion dynamics of burners with corners were studied using Planar Laser Induced Fluorescence (PLIF) imaging. The effect of sharp corners on the air flow dynamics, shown earlier in cold flow tests, was also found in the reacting flow of a flame. The sharp corners interrupted the coherent structures generated in an axisymmetric shear flow. The combustion at the flat sections of the flame occurred in periodic, coherent large scale structures but was continuous and homogeneous in the vertices sections. The azimuthal structure of the noncircular flame changed in a pattern similar to that found in nonreacting flows. Combined regions of small- and large-scale mixing in the same flow, a unique feature of burners having sharp corners, is beneficial for combustion applications.  相似文献   

9.
To investigate the performance of the heat and mass transfer of ammonia water during the process of falling film evaporation in vertical tube evaporator, a mathematical model of evaporation process was developed and solved based on stream function. Then an experimental study of falling film evaporation was carried out in order to validate the mathematical model. A series of parameters, such as velocity, film thickness and concentration, etc., were obtained from the mathematical model. The calculated results show that the average velocity and the film thickness change sharp at the entrance region when x?x?>?100 mm. The film thickness depends largely on the flow rate of solution. It is observed that the heating power and mass flow of solution significantly affect the concentration difference between the inlet and outlet of evaporation tube. The calculated results reveal that the tube length has a significant impact on the amounts of ammonia vapor evaporated. It is suggested that the roll-worked enhanced tube should be used in order to decrease the concentration gradient in the film thickness direction and enhance the heat and mass transfer rate. Furthermore, the experimental and calculated results indicate that the inlet solution concentration has a great influence on the heat exchange capacity, the amounts of ammonia vapor evaporated and the evaporation pressure.  相似文献   

10.
In this paper, Poiseuille flow of a polar fluid (model of a red blood cell suspension) under various boundary conditions at the wall, viz., slip or no-slip in the axial velocity and couple stresses zero or non-zero at the boundary, is considered from the point of view of its applications to blood flow. Analytic expressions for axial and rotational velocities, flow rate, effective viscosity and stresses are obtained. The magnitudes of the length ratioL and the coupling number N are determined in accordance with concentration and tube radius (in the existing literature, values ofL andN are chosen arbitrarily). Velocity profiles (both axial and rotational) and the variation of the effective viscosity with concentration, tube radius and for various values of the boundary condition parameters are shown graphically. The analytic results obtained are compared with experimental results (for blood flow). It is found that they are in a reasonably good agreement. The effective viscosity exhibits the Inverse Fahraeus-Lindquist Effect in all the cases (including the slip or no-slip in the velocity fields). A method is given for determining the non-zero couple stress boundary condition for a given concentration. Applications of this theory to blood flow are briefly discussed.  相似文献   

11.
李立 《力学与实践》2017,39(1):18-24
提出一种基于非结构混合网格和有限体积法的有效计算策略,对第二期国际涡流试验项目(second international vortex flow experiment,VFE-2)的尖前缘65°三角翼在马赫数0.4,迎角20.3°,雷诺数2×10~6条件下的亚音速复杂流场结构进行数值模拟,重点探讨了基于计算数据进行该类型复杂涡系干扰表面和空间流场关键特征提取和数据可视化问题.通过与相关试验类比,建立了与先进试验流动显示技术相比拟的定性和定量分析方法,为三角翼这类复杂流场结构的精细分析奠定了技术基础.采用上述方法,细致分析了亚音速三角翼的大迎角复杂旋涡流场结构,得到了与试验一致的结论.研究证实:在大迎角条件下,三角翼流动物理复杂,黏性效应耦合严重,只有通过N-S方程计算才能准确地捕捉主涡和二次涡的发展.  相似文献   

12.
The eigenfunction expansion method is used to obtain local solutions to some non-Newtonian slow viscous flows. The forms of viscosity variation amenable to such analysis are restricted but do include power-law fluids. Power-law flow near a sharp corner between plane boundaries is analysed and results are obtained for the critical corner angle for eddy formation. Flows near a 90° corner with either a moving boundary or a finite flow rate at the corner are also considered. The “stick-slip” behaviour of a power-law fluid at a plane solid boundary is shown to obey a simple law.  相似文献   

13.
An adaptive-grid finite-difference method is applied to a model for non-isothermal, coupled flow and transport of brine in porous media. In the vicinity of rock salt formations the salt concentration in the fluid becomes large, giving rise to disparate scales in the salt concentrations profiles. A typical situation one encounters is that of a sharp freshwater-saltwater interface that moves in time. In such situations adaptive-grid methods are more effective than standard fixed-grid methods, since they refine the space grid locally and, hence, provide for substantial reduction in the number of grid points, memory use and CPU time. The adaptive-grid method of this paper is a static, local uniform grid refinement method. Its main feature is that it integrates on nested sequences of locally uniformly refined Cartesian space grids, which are automatically adjusted in time to follow rapid spatial transitions. Variable time steps are used to cope with rapid temporal transitions, including a fast march to possible steady-state solutions. For time stepping, the implicit, second-order BDF scheme is used. Two specific example problems are numerically illustrated. The main physical properties involved here are advection and dispersion and in case of dominant advection sharp freshwater-saltwater interfaces arise.  相似文献   

14.
A micropolar model for blood simulating magnetohydrodynamic flow through a horizontally nonsymmetric but vertically symmetric artery with a mild stenosis is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the horizontal shape of the stenosis can easily be changed just by varying a parameter referred to as the shape parameter. Flow parameters, such as velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region, and its magnitude at the maximum height of the stenosis (stenosis throat), have been computed for different shape parameters, the Hartmann number and the Hall parameter. This shows that the resistance to flow decreases with the increasing values of the parameter determining the stenosis shape and the Hail parameter, while it increases with the increasing Hartmann number. The wall shear stress and the shearing stress on the wall at the maximum height of the stenosis possess an inverse characteristic to the resistance to flow with respect to any given value of the Hartmann number and the Hall parameter. Finally, the effect of the Hartmann number and the Hall parameter on the horizontal velocity is examined.  相似文献   

15.
Human blood at physiological volume concentration exhibits non-Newtonian and thixotropic properties. The blood flow in the microcirculation is pulsatile, initiated from the heart pulse and can be considered as superposition of two partial flows: a) a steady shear, and b) an oscillatory shear. Until now steady and viscoelastic behavior were separately investigated. Here we present the response to the combination of steady and oscillatory shear for human blood, a high molecular weight aqueous polymer solution (polyacrylamide AP 273E) and an aqueous xanthan gum solution. The polyacrylamide and xanthan solutions are fluids that model the rheological properties of human blood. In general, parameters describing blood viscoelasticity became less pronounced as superimposed steady shear increased, especially at low shear region and by elasticity, associated with reduction in RBC aggregation. The response of polymer solutions to superposition shows qualitative similarities with blood by elasticity, but their quantitative response differed from that of blood. By viscosity another behavior was observed. The superposition effect on viscous component was described by a modified Carreau equation and for the elastic component by an exponential equation.Paper in part presented at the Symposium on Rheology and Computational Fluid Mechanics dedicated to the memory of Prof. A. C. Papanastasiou, University of Cyprus, Nicosia, July 4–5, 1996  相似文献   

16.
In this study, two dimensional heat/mass transfer characteristics and flow features were investigated in a rectangular wavy duct with various corrugation angles. The test duct had a width of 7.3 mm and a large aspect ratio of 7.3 to simulate two dimensional characteristics. The corrugation angles used were 100°, 115°, 130°, and 145°. Numerical analysis using the commercial code FLUENT, was used to analyze the flow features. In addition, the oil-lamp black method was used for flow visualization. Local heat/mass transfer coefficients on the corrugated walls were measured using a naphthalene sublimation technique. The Reynolds number, based on the duct hydraulic diameter, was varied from 700 to 5,000. The experimental results and numerical analysis showed interesting and detailed features in the wavy duct. Main flow impinged on upstream of a pressure wall, and the flow greatly enhanced heat/mass transfer. On a suction wall, however, flow separation and reattachment dominantly affected the heat/mass transfer characteristics on the wall. As the corrugation angle decreased (it means the duct has more sharp turn), the region of flow stagnation at the front part of the pressure wall became wider. Also, the position of flow reattachment on the suction wall moved upstream as the corrugation angle decreased. A high heat transfer rate appeared at the front part of the pressure wall due to main-flow impingement, and at the front part of the suction wall due to flow reattachment. The high heat/mass transfer region by the main-flow impingement and the circulation flow induced at a valley between the pressure and suction walls changed with the corrugation angle and the Reynolds number. As the corrugation angle decreased, the flow in the wavy duct changed to transition to turbulent flow earlier.  相似文献   

17.
Curiosity landed on plains to the north of Mount Sharp in August 2012. By June 2016 the rover had traversed 12.9 km to the southwest, encountering extensive strata that were deposited in a fluvial-deltaic-lacustrine system. Initial drives across sharp sandstone outcrops initiated an unacceptably high rate of punctures and cracks in the thin aluminum wheel skin structures. Initial damage was found to be related to the drive control mode of the six wheel drive actuators and the kinematics of the rocker-bogie suspension. Wheels leading a suspension pivot were forced onto sharp, immobile surfaces by the other wheels as they maintained their commanded angular velocities. Wheel damage mechanisms such as geometry-induced stress concentration cracking and low-cycle fatigue were then exacerbated. A geomorphic map was generated to assist in planning traverses that would minimize further wheel damage. A steady increase in punctures and cracks between landing and June 2016 was due in part because of drives across the sharp sandstone outcrops that could not be avoided. Wheel lifetime estimates show that with careful path planning the wheels will be operational for an additional ten kilometers or more, allowing the rover to reach key strata exposed on the slopes of Mount Sharp.  相似文献   

18.
The effect of passive porous coatings of different lengths on the second mode of disturbances in a hypersonic boundary layer is considered. The experiments are performed in a flow with a free-stream Mach number M = 5.8 and five values of the unit Reynolds number around a sharp cone with an apex half-angle equal to 7°, which is aligned at a zero angle of attack. One half of the model surface along its generatrix is covered by a porous material, and the other part is a solid surface. Pressure fluctuations on the model surface are measured. It is found that application of a passive porous coating can either decrease or increase the amplitude of the second mode. The length of the passive porous coating corresponding to the maximum efficiency of its action on flow disturbances and the coating length that increases the amplitude of the second mode are found.  相似文献   

19.
A collocation method based on multiple regions with moving boundaries placed in a flow field in which convection effects dominate, is proposed. By making the moving boundaries of the regions coincide with moving sharp fronts present in the solution of convection dominated problems, and thereby allowing higher concentration of meshes to be placed about the fronts, the proposed method is able to achieve very high accuracy. By having a moving mesh, the Peclet number characterizing the flow field depends upon velocity relative to a moving mesh in a region. Consequently by choosing proper velocities of the moving boundaries, the value of this Peclet number can be made as small as desired. The traditional collocation method based on centred discretization, when applied to each region in the field, produces oscillation free solutions even when the values of Peclet number based on absolute velocity are extremely large. In view of these characteristics the method appears to be an excellent candidate for the solution of any two-phase flow problem containing sharp fronts.  相似文献   

20.
The phenomenon of flow channeling in packed beds is investigated in the present analysis. A closed-form solution is obtained from the volume-averaged second-order momentum equation with the no-slip condition at the wall, using an exponential porosity distribution typical of packed beds. The predicted velocity profile shows the most important features of flow channeling: the sharp peak in the velocity near the wall, and the approach to the Darcy velocity far from the wall. The predictions are consistent with previous numerical results and with velocity measurements made downstream of a packed bed. The compact expression for the velocity given here is shown to be convenient for analyzing other packed-bed characteristics, such as the effective permeability of a finite-sized bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号