首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A novel chromium(III) complex of tetraoxalylurea was prepared. In aqueous solutions, [CrIII(H2L)(H2O)]+ (H2L = diprotonated tetraoxalylurea) is oxidized by IO 4 according to the rate law
  相似文献   

2.
The kinetics and mechanism of the reduction of enneamolybdonickelate(IV) by iodide in acid aqueous solution was studied by spectrophotometry. The reaction rate increases, as the concentration of H+ increases and with temperature. It shows that the reaction rate law is The reaction rate constants and activation parameters of the rate-determining steps were evaluated. A mechanism related to the reaction is proposed.  相似文献   

3.
The kinetics of aqua ligand substitution fromcis-[Ru(bipy)2(H2O)2]2+ by 1, 10-phenanthroline (phen) have been studied spectrophotometrically in the 35 to 50°C temperature range. We propose the following rate law for the reaction within the 3.65 to 5.5 pH range:
  相似文献   

4.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

5.
The kinetics of anation of chromium(III) species, [Cr(H2O)6]3+ and [Cr(H2O)5OH]2+, by DL-methionine have been studied spectrophotometrically. Effects of varying [methionine]T, [H+], and temperature were investigated. The results are in accord with a mechanism involving a fast 11 outer-sphere association between chromium(III) species and amino acid zwitterion, followed by transformation of the outer-into inner-sphere complex by slow interchange. The rate law consistent with the mechanism is as follows:
  相似文献   

6.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

7.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

8.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

9.
The rapid oxidation ofbis(2,4,6-tripyridyl-1,3,5-triazine)-iron(II), [Fe(TPTZ)2]2+, bytrans-1,2-diaminocyclohexanetetraacetatomanganate(III), [MnIII(Y)], in acetate buffers was monitored using stopped-flow spectrophotometry. The reaction is first order in the substrate and evidence was obtained for pre-complexation between the oxidant and the substrate. The reaction rate increases as the pH increases. Characterisation of the products using the radiotracers54Mn and59Fe indicated that [MnII(Y)]2− and [Fe(TPTZ)2]3+ are the final products. The reaction obeys the rate law:
  相似文献   

10.
In the present work as well as HRO. radicals were generated in the photochemical interaction of 1,2-benzanthracene with -ethyl phenyl hydroperoxide /HROOH/ in C6H6 and CCl4 at 304 K. radicals were trapped by C6H6. The main reaction of HRO. radicals is hydrogen abstraction from the hydroperoxide group of HROOH. Although OH radicals are less selective, the hydrogen abstraction is the main process during their interaction with aromatics in contrast to reactions in aqueous solutions, where addition to the benzene ring is the rate-determining process in CCl4:
  相似文献   

11.
The reaction between VV and TlI was studied in 4.0 mol dm–3 HCl at an ionic strength of 4.1 mol dm–3 at 25° C. The main active species under the reaction conditions were found to be VO inf2 sup+ and TlCl inf3 sup2– for the oxidant and reductant, respectively. A probable mechanism in terms of these species is given, and follows the rate law:
  相似文献   

12.
The kinetics of oxidation of malonic acid, studied in aqueous acid perchlorate, conform to the rate law
  相似文献   

13.
The kinetics of the reaction of manganese(III) with oxalic acid (OA) has been studied in H2SO4 solutions. Under the experimental conditions of 6 × 10–3 <>0 < 0.4=" mol=">–3 and [H2SO4]0 0.2 mol dm–3 the observed pseudo-first order rate constant k obs follows the expression
  相似文献   

14.
The kinetics of the decomposition of hydrogen peroxide was studied in aqueous medium in the temperature range 25–40°C in the presence of Wofatit KPS-resin in the form of Cu(II)-ammine complex ions. The rate constant was deduced at various degrees of resin cross-linkage and different concentrations of hydrogen peroxide. The order of the decomposition reaction varied from first order to half order, i.e., the order of the reaction decreased with increasing the concentration of H2O2. The decomposition process was found to be a catalytic reaction which was controlled by the chemical reaction of H2O2 molecules with the active species inside the resin particles. The mechanism of the reaction can be summarized by the equation in which the subsequent reactions of the probable active complex are discussed.  相似文献   

15.
The kinetics and mechanism of the oxidation of [CrIII(DPA)(IDA)(H2O)]? (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × 10?6 mol dm?3 enhanced the reaction rate; the reaction is first order with respect to both [IO4 ?] and the Cr complex, and obeys the following rate law: \( {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . \) Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO4 ? to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation.  相似文献   

16.
The kinetics and mechanism of the reduction of enneamolybdonickelate(IV) by arsenite in aqueous acid solution was studied by spectrophotometry. The reaction rate increases with increasing concentrations of H+ and with temperature. The associated rate law is: . The rate constants and activation parameters of the rate-determining step were evaluated. A mechanism related to this reaction was proposed.  相似文献   

17.
The kinetics of the oxidation of [N-(2-hydroxyethyl)-ethylene-diamine-N,N,N-triacetato] cobalt(II), [CoII-(HEDTA)], by N-bromosuccinimide, NBS, have been studied in aqueous solutions and water-methanol solvent mixtures under various conditions. The reaction stoichiometry indicates that one mole of NBS reacts with one mole of [CoII(HEDTA)]. In aqueous solutions the reaction obeys the following rate law:
  相似文献   

18.
The kinetics of substitution of aqua ligands fromcis-[Ru(bipy)2(H2O)2]2+ ion by salicylhydroxamic acid (L) in aqueous medium has been studied spectrophotometrically at different temperatures (50–65°C). The following rate law has been established in the pH range 4.0 to 5.8;
  相似文献   

19.
The kinetics of alkaline hydrolysis of Co(Asn)2, yielding Co(OH)2, NH3 and aspartic acid, have been studied spectrophotometrically, and the effects of CoII and NaOH concentrations on the reaction rate determined. The rate increases with increasing [NaOH], whereas variation of [CoII] has no significant effect. The kinetics of NH3 evolution conform to the rate law:
It is proposed that the reaction proceeds through formation of a dianionic tetrahedral intermediate.  相似文献   

20.
A self-catalytic effect attributed to Mn2+ ions was observed when studying the oxidation of L-threonine by permanganate ions. The process obeys the rate equation:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号