首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
The S mass fractions of coal SRMs 2682b, 2684b, and 2685b are certified by direct comparison with coal SRMs 2682a, 2684a, and 2685a, respectively, using high-temperature combustion analysis with infrared (IR) absorption detection. The S mass fractions of the “a” materials used for calibration were previously determined by means of isotope-dilution thermal-ionization mass spectrometry (ID-TIMS). Therefore, the comparisons performed with the combustion–IR absorption method establish direct traceability links to accurate and precise ID-TIMS measurements. The expanded uncertainties associated with the certified S mass fractions are of approximately the same magnitude as would be expected for the ID-TIMS methodology. An important aspect of these certifications is that each “b” material is essentially identical with the corresponding “a” material, because both were produced from the same bulk, homogenized coal. As a test of the efficacy of the new certification approach when calibrant and unknown are not identical, the S mass fraction of coal SRM 2683b has been determined by direct comparison to coal SRM 2683a. These two coals, which have both previously been analyzed with ID-TIMS, are different in terms of S content and other properties. Whereas the S mass fraction for SRM 2683b determined with the new methodology agrees statistically with the ID-TIMS value, there is reason for caution in such cases. In addition to the usefulness of the alternative approach for certification activities within NIST, this approach might also be an excellent way of establishing NIST traceability during the value assignment process for reference materials not issued by NIST. Further research is needed, however, to understand better the scope of applicability.  相似文献   

2.
Multiple units of Standard Reference Materials (SRMs) 1566 Oyster Tissue, 1567 Wheat Flour, 1568 Rice Flour, and 1570 Trace Elements in Spinach, produced by the National Institute of Standards and Technology (NIST, then the National Bureau of Standards), were analyzed 17-20 years after the original certification dates and 12-15 years after the certificates became invalid. Instrumental neutron activation analysis and thermal neutron prompt gamma-ray activation analysis were used to measure mass fractions for 27 elements in these SRMs to revalidate them for use in quality assurance (QA) programs required for food analysis programs within the U.S. Food and Drug Administration. With the exception of Se in SRM 1567, all element mass fractions were in agreement with certified values and literature data. Some evidence of B loss from SRM 1568 was observed. These materials were judged to be suitable for continued use in QA programs. Findings showed that these matrixes exhibited stability of moisture, mass fraction, and weight basis for far longer (> or =15 years) than was indicated by the 5-year validity statement on the NIST Certificates of Analysis.  相似文献   

3.
The National Institute of Standards and Technology (NIST) has developed several Standard Reference Materials (SRMs) based on human serum. NIST SRM 909b, Human Serum, is a lyophilized human serum material with concentrations for seven organic and six inorganic analytes at two levels certified solely by definitive methods (DMs). This material provides the vehicle by which high precision, high accuracy measurements made with DMs at NIST can be transferred through the measurement hierarchy to other laboratories. Isotope dilution gas chromatographic-mass spectrometric (GC-IDMS) methods were applied to measure cholesterol, creatinine, glucose, urea, uric acid, triglycerides, and total glycerides. Thermal ionization isotope dilution mass spectrometry (TI-IDMS) was used for determination of lithium, magnesium, potassium, calcium, and chloride. In addition, chloride was determined by coulometry, providing a comparison between two DMs. Sodium, which lacks a stable isotope that would permit isotope dilution mass spectrometric (IDMS) measurement, was determined by gravimetry. SRM 909b includes certified values for total glycerides and triglycerides, which were not certified in the previous lot of this material (SRM 909a). Improvement in uniformity of vial fill weight in the production of SRM 909b resulted in smaller certified uncertainties over previous freeze-dried serum SRMs. Uncertainties at the 99% level of confidence for relative expanded uncertainty (%) for certification of the organic analytes on a mmol/L/g basis ranged from 0.44% for urea (level II) to 5.04% for glucose (level II). (In-house studies have shown glucose to be a relatively unstable analyte in similar lyophilized serum materials, degrading at about 1% per year.) Relative expanded uncertainties (99% C.I.) for certification of inorganic analytes on a mmol/L/g basis ranged from 0.25% for chloride (level I) to 0.49% for magnesium (level II).  相似文献   

4.
The National Institute of Standards and Technology (NIST) has developed several Standard Reference Materials (SRMs) based on human serum. NIST SRM 909b, Human Serum, is a lyophilized human serum material with concentrations for seven organic and six inorganic analytes at two levels certified solely by definitive methods (DMs). This material provides the vehicle by which high precision, high accuracy measurements made with DMs at NIST can be transferred through the measurement hierarchy to other laboratories. Isotope dilution gas chromatographic-mass spectrometric (GC-IDMS) methods were applied to measure cholesterol, creatinine, glucose, urea, uric acid, triglycerides, and total glycerides. Thermal ionization isotope dilution mass spectrometry (TI-IDMS) was used for determination of lithium, magnesium, potassium, calcium, and chloride. In addition, chloride was determined by coulometry, providing a comparison between two DMs. Sodium, which lacks a stable isotope that would permit isotope dilution mass spectrometric (IDMS) measurement, was determined by gravimetry. SRM 909b includes certified values for total glycerides and triglycerides, which were not certified in the previous lot of this material (SRM 909a). Improvement in uniformity of vial fill weight in the production of SRM 909b resulted in smaller certified uncertainties over previous freeze-dried serum SRMs. Uncertainties at the 99% level of confidence for relative expanded uncertainty (%) for certification of the organic analytes on a mmol/L/g basis ranged from 0.44% for urea (level II) to 5.04% for glucose (level II). (In-house studies have shown glucose to be a relatively unstable analyte in similar lyophilized serum materials, degrading at about 1% per year.) Relative expanded uncertainties (99% C.I.) for certification of inorganic analytes on a mmol/L/g basis ranged from 0.25% for chloride (level I) to 0.49% for magnesium (level II). Received: 30 July 1997 / Revised: 24 October 1997 / Accepted: 31 October 1997  相似文献   

5.
Neutron activation analysis is one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). NAA competes favorably with all other techniques because of it's unique capabilities for high accuracy even at very low concentrations for many elements. In this paper, instrumental and radiochemical NAA results are described for 25 elements in two new NIST SRMs, SRM 1515 (Apple Leaves) and SRM 1547 (Peach Leaves), and are compared to the certified values for 19 elements in these two new botanical reference materials.  相似文献   

6.
Standard reference materials for foods and dietary supplements   总被引:1,自引:0,他引:1  
Well-characterized certified reference materials are needed by laboratories in the food testing, dietary supplement, and nutrition communities to facilitate compliance with labeling laws and improve the accuracy of information provided on product labels, so that consumers can make good choices. As a result of the enactment of the Nutrition Labeling and Education Act of 1990 and the Infant Formula Act of 1980, the National Institute of Standards and Technology (NIST) worked to develop a series of food-matrix standard reference materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue, SRM 2383 Baby Food Composite, SRM 2384 Baking Chocolate, SRM 2385 Slurried Spinach, and SRM 2387 Peanut Butter. With the enactment of the Dietary Supplement Health and Education Act of 1994, NIST has been working to develop suites of dietary supplement SRMs characterized for active and marker compounds and for toxic elements and pesticides, where appropriate. An updated SRM 1588b Organics in Cod Liver Oil, a suite of ephedra-containing materials (SRMs 3240–3245), a carrot extract in oil (SRM 3276), and a suite of ginkgo-containing materials (SRMs 3246–3248) are available. Several other materials are currently in preparation. Dietary supplements are sometimes provided in forms that are food-like; for these, values may also be assigned for nutrients, for example SRM 3244 Ephedra-Containing Protein Powder. Both the food-matrix and dietary supplement reference materials are intended primarily for validation of analytical methods. They may also be used as “primary control materials” in assignment of values to in-house (secondary) control materials to confirm accuracy and to establish measurement traceability to NIST.  相似文献   

7.
Thermal neutron capture prompt gamma-ray activation analysis (PGAA) was used to determine mass fractions of H, B, C, N, Na, Cl, K, and S in 2 meat homogenates. Twelve units of candidate Standard Reference Material (SRM) 1546 Meat Homogenate produced by the National Institute of Standards and Technology (NIST) were analyzed to provide NIST with certification data. This SRM is a realistic processed food matrix, ideal for food analysis programs such as the Food and Drug Administration's Total Diet Study. Another meat homogenate, Certified Reference Material LGC 7002 Pork/Chicken (along with NIST SRMs 1549 Non-Fat Milk Powder and 1571 Orchard Leaves) was analyzed for quality control. Candidate SRM 1546 unit-to-unit heterogeneity was <2% for H, Na, Cl, and K, and 3.5% for N and within-unit heterogeneity was <2% for H, N, Cl, and K, and 2.9% for Na, similar to LGC 7002 homogeneity results. Control material mass fractions agreed well with certificate and consensus values. Protein mass fractions, calculated from N results, were 15.2% and 11.9% for candidate SRM 1546 and LGC 7002, respectively. Protein content calculated for SRM 1549 (36.0%) agreed well with known values for dried non-fat milk powder.  相似文献   

8.
Summary NIST issues food related, chemical composition standard reference materials for validating food analyses. SRMs certified for inorganic constituents are: Non-Fat Milk Powder (SRM 1549), Oyster Tissue (SRM 1566a), Bovine Liver (SRM 1577a), Wheat Flour (SRM 1567a), Rice Flour (SRM 1568a), and Total Diet (SRM 1548). The certificate of analysis for the total diet SRM also provides a certified concentration for cholesterol. Oyster tissue, a renewal SRM, is certified for 25 elements including 6 (Al, Cl, I, P, S, and V), that had not been certified in the previously issued SRM 1566. The elemental certified concentrations are based on concordant results of two or more independent analytical methods. The chemical compositions of the six food matrix SRMs are tabulated. Three food matrix SRMs certified for organic constituents are: Cholesterol and Fat-Soluble Vitamins in Coconut Oil (SRM 1563), Cholesterol in Whole Egg Powder (SRM 1845) and Organics in Cod Liver Oil (SRM 1588). Serum and urine matrix SRMs are also available that may be useful for metabolic and bioavailability studies.  相似文献   

9.
Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4′-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis.
Figure
Comparison of Concentrations of Selected Compounds in Human Serum and Human Milk Standard Reference Materials (SRMs)  相似文献   

10.
Three new mussel tissue standard reference materials (SRMs) have been developed by the National Institute of Standards and Technology (NIST) for the determination of the concentrations of organic contaminants. The most recently prepared material, SRM 1974b, is a fresh frozen tissue homogenate prepared from mussels (Mytilus edulis) collected in Boston Harbor, Massachusetts. The other two materials, SRMs 2977 and 2978, are freeze-dried tissue homogenates prepared from mussels collected in Guanabara Bay, Brazil and Raritan Bay, New Jersey, respectively. All three new mussel tissue SRMs complement the current suite of marine natural-matrix SRMs available from NIST that are characterized for a wide range of contaminants (organic and inorganic). SRM 1974b has been developed to replace its predecessor SRM 1974a, Organics in Mussel Tissue, for which the supply is depleted. Similarly, SRMs 2977 and 2978 were developed to replace a previously available (supply depleted) freeze-dried version of SRM 1974a, SRM 2974, Organics in Freeze-Dried Mussel Tissue. SRM 1974b is the third in a series of fresh frozen mussel tissue homogenate SRMs prepared from mussels collected in Boston Harbor starting in 1988. SRM 1974b has certified concentration values for 22 polycyclic aromatic hydrocarbons (PAHs), 31 polychlorinated biphenyl congeners (PCBs), and 7 chlorinated pesticides. Reference values are provided for additional constituents: 16 PAHs, 8 PCBs plus total PCBs, 6 pesticides, total extractable organics, methylmercury, and 11 trace elements. PAH concentrations range from about 2 ng g–1 dry mass (cyclopenta[cd]pyrene) to 180 ng g–1 dry mass (pyrene). PCB concentrations range from about 2 ng g–1 dry mass (PCB 157) to 120 ng g–1 dry mass (PCB 153). The reference value for total PCBs in SRM 1974b is (2020 ± 420) ng g–1 dry mass. Pesticide concentrations range from about 4 ng g–1 dry mass (4,4-DDT) to 40 ng g–1 dry mass (4,4-DDE). SRM 2977 has certified values for 14 PAHs, 25 PCB congeners, 7 pesticides, 6 trace elements, and methylmercury. Reference values for 16 additional PAHs and 9 inorganic constituents are provided, and information values are given for 23 additional trace elements. SRM 2978 has certified and reference concentrations for 41 and 22 organic compounds, respectively, and contains contaminant levels similar to those of SRM 1974b. Organic contaminant levels in SRM 2977 (mussels from Guanabara Bay, Brazil) are typically a factor of 2 to 4 lower than those in SRM 1974b and SRM 2978. The organic contaminant concentrations in each new mussel tissue SRM are presented and compared in this paper. In addition, a chronological review of contaminant concentrations associated with mussels collected in Boston Harbor is discussed as well as a stability assessment of SRM 1974a.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

11.
Two new marine sediment standard reference materials (SRMs), SRM 1941b Organics in Marine Sediment and SRM 1944 New York/New Jersey Waterway Sediment, have been recently issued by the National Institute of Standards and Technology (NIST) for the determination of organic contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB) congeners, and chlorinated pesticides. Both sediment SRMs were analyzed using multiple analytical methods including gas chromatography/mass spectrometry (GC/MS) on columns with different selectivity, reversed-phase liquid chromatography with fluorescence detection (for PAHs only), and GC with electron capture detection (for PCBs and pesticides only). SRM 1941b has certified concentrations for 24 PAHs, 29 PCB congeners, and 7 pesticides, and SRM 1944 has certified concentrations for 24 PAHs, 29 PCB congeners, and 4 pesticides. Reference concentrations are also provided for an additional 58 (SRM 1941b) and 39 (SRM 1944) PAHs, PCB congeners, and pesticides. SRM 1944, which was collected from multiple sites within New York/New Jersey coastal waterways, has contaminant concentrations that are generally a factor of 10–20 greater than SRM 1941b, which was collected in the Baltimore (Maryland) harbor. These two SRMs represent the most extensively characterized marine sediment certified reference materials available for the determination of organic contaminants.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

12.
Well-characterized reference materials are needed by laboratories in the food testing and nutrition communities to facilitate compliance with nutritional labeling laws, to provide traceability for food exports needed for acceptance in many foreign markets, and to improve the accuracy of nutrition information that is provided to assist consumers in making sound dietary choices. As a result of the enactment of the Nutrition Labeling and Education Act of 1990 and the Infant Formula Act of 1980, the National Institute of Standards and Technology (NIST) has developed a suite of food-matrix Standard Reference Materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, SRM 1946 Lake Superior Fish Tissue, SRM 2383 Baby Food Composite, SRM 2384 Baking Chocolate, SRM 2385 Spinach, and SRM 2387 Peanut Butter. Many of these materials were developed at the request of the food industry to populate a nine-sectored fat-protein-carbohydrate triangle developed by AOAC International. With the completion of SRM 2387, SRMs representing each sector of the triangle are now available. These food-matrix reference materials are intended primarily for validation of analytical methods for the measurement of proximates, fatty acids, vitamins, minerals, and so on in foods of similar composition. They may also be used as "primary control materials" in the value-assignment of in-house, secondary, control materials to confirm accuracy as well as to establish traceability to NIST.  相似文献   

13.
This paper describes the development of two independent analytical methods for the extraction and quantification of methylmercury from marine biota. The procedures involve microwave extraction, followed by derivatization and either headspace solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS)-coated silica fiber or back-extraction into iso-octane. The identification and quantification of the extracted compounds is carried out by capillary gas chromatography/mass spectrometric (GC/MS) and inductively coupled plasma mass spectrometric (GC/ICP-MS) detection. Both methods were validated for the determination of methylmercury (MeHg) concentrations in a variety of biological standard reference materials (SRMs) including fresh-frozen tissue homogenates of SRM 1946 Lake Superior fish tissue and SRM 1974a organics in mussel tissue (Mytilus edulis) and then applied to the certification effort of SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis). While past certifications of methylmercury in tissue SRMs have been based on two independent methods from the National Institute of Standards and Technology (NIST) and participating laboratories, the methods described within provide improved protocols and will allow future certification efforts to be based on at least two independent analytical methods within NIST.  相似文献   

14.
A suite of three green tea-containing Standard Reference Materials (SRMs) has been issued by the National Institute of Standards and Technology (NIST): SRM 3254 Camellia sinensis (Green Tea) Leaves, SRM 3255 Camellia sinensis (Green Tea) Extract, and SRM 3256 Green Tea-Containing Solid Oral Dosage Form. The materials are characterized for catechins, xanthine alkaloids, theanine, and toxic elements. As many as five methods were used in assigning certified and reference values to the constituents, with measurements carried out at NIST and at collaborating laboratories. The materials are intended for use in the development and validation of new analytical methods, and for use as control materials as a component in the support of claims of metrological traceability.  相似文献   

15.
Standard reference materials (SRMs) are valuable tools in developing and validating analytical methods to improve quality assurance standards. The National Institute of Standards and Technology (NIST) has a long history of providing environmental SRMs with certified concentrations of organic and inorganic contaminants. Here we report on new certified and reference concentrations for 27 polybrominated diphenyl ether (PBDE) congeners in seven different SRMs: cod-liver oil, whale blubber, fish tissue (two materials), mussel tissue and sediment (two materials). PBDEs were measured in these SRMs, with the lowest concentrations measured in mussel tissue (SRM 1974b) and the highest in sediment collected from the New York/New Jersey Waterway (SRM 1944). Comparing the relative PBDE congener concentrations within the samples, we found the biota SRMs contained primarily tetrabrominated and pentabrominated diphenyl ethers, whereas the sediment SRMs contained primarily decabromodiphenyl ether (BDE 209). The cod-liver oil (SRM 1588b) and whale blubber (SRM 1945) materials were also found to contain measurable concentrations of two methoxylated PBDEs (MeO-BDEs). Certified and reference concentrations are reported for 12 PBDE congeners measured in the biota SRMs and reference values are available for two MeO-BDEs. Results from a sediment interlaboratory comparison PBDE exercise are available for the two sediment SRMs (1941b and 1944).  相似文献   

16.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 +/- 0.7 microg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 +/- 1.7 microg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

17.
The elements Mn and V were determined by INAA in about 5 mg and 100 mg aliquots of NIST SRM 1648 to elucidate discrepancies between our previous results for the 0.5 mg to 15 mg aliquots and the NIST certified and/or information values. Simultaneously, other NIST SRMs 1633a, 2704, and BCR CRMs 038, 101 and 143 were also analyzed. Special attention was given to evaluating and minimizing uncertainties of all steps of analysis. Our results compared very well with the respective certified and/or information values (if available) of all SRMs and CRMs studied, except for NIST SRM 1648. For this SRM we have found significantly lower results than the NIST values which suggests that the NIST values are positively biased by about 10%. A new value for V in BCR CRM 143 was also obtained.  相似文献   

18.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 ± 0.7 μg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 ± 1.7 μg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

19.

A combination of cold neutron prompt gamma-ray activation analysis (CNPGAA) and thermal neutron (TN) PGAA was used to determine sulfur in fuel oils to develop a method to provide values for certification. CNPGAA was used to measure S/H mass ratios, and TNPGAA to measure hydrogen mass fractions. Measurements were combined to determine sulfur mass fractions (with expanded uncertainties) of 2.159 ± 0.072 % for SRM 1622e, 0.7066 ± 0.0120 % for SRM 1619b, and 0.1266 ± 0.0030 % for SRM 1617b, in agreement with certified values. The results validate the method as suitable for certification of sulfur at mass fractions ≥0.1 %.

  相似文献   

20.
The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards (NBS)) issued the first botanical reference material certified for elemental content in January 1971, as Standard Reference Material (SRM) 1571, Orchard Leaves. In the following years a total of nine additional botanical certified reference materials have been issued by NIST. Each of these materials was certified for major, minor and trace elements except for SRM 2695, certified for fluorine only. Botanical SRMs issued since 1991 are significantly improved over previous materials in a number of ways. Probably the most significant change is the use of a jet-milling process to grind them to extremely fine particles. This has resulted in botanical SRMs with significantly improved homogeneity. These NIST reference materials are described with information on homogeneity, drying techniques and grit content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号