首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that, if ${u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N}We prove that, if u : W ì \mathbbRn ? \mathbbRN{u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N} is a solution to the Dirichlet variational problem
minwòW F(x, w, Dw) dx     subject  to     w o u0  on  ?W,\mathop {\rm min}\limits_{w}\int_{\Omega} F(x, w, Dw)\,{\rm d}x \quad {\rm subject \, to} \quad w \equiv u_0\; {\rm on}\;\partial \Omega,  相似文献   

2.
In general, for higher order elliptic equations and boundary value problems like the biharmonic equation and the linear clamped plate boundary value problem, neither a maximum principle nor a comparison principle or—equivalently—a positivity preserving property is available. The problem is rather involved since the clamped boundary conditions prevent the boundary value problem from being reasonably written as a system of second order boundary value problems. It is shown that, on the other hand, for bounded smooth domains W ì \mathbbRn{\Omega \subset\mathbb{R}^n} , the negative part of the corresponding Green’s function is “small” when compared with its singular positive part, provided n\geqq 3{n\geqq 3} . Moreover, the biharmonic Green’s function in balls B ì \mathbbRn{B\subset\mathbb{R}^n} under Dirichlet (that is, clamped) boundary conditions is known explicitly and is positive. It has been known for some time that positivity is preserved under small regular perturbations of the domain, if n = 2. In the present paper, such a stability result is proved for n\geqq 3{n\geqq 3} .  相似文献   

3.
We prove a regularity result for the anisotropic linear elasticity equation ${P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f}We prove a regularity result for the anisotropic linear elasticity equationP u : = div ( C ·?u) = f{P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f} , with mixed (displacement and traction) boundary conditions on a curved polyhedral domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} in weighted Sobolev spaces Km+1a+1(W){\mathcal {K}^{m+1}_{a+1}(\Omega)} , for which the weight is given by the distance to the set of edges. In particular, we show that there is no loss of Kma{\mathcal {K}^{m}_{a}} -regularity. Our curved polyhedral domains are allowed to have cracks. We establish a well-posedness result when there are no neighboring traction boundary conditions and |a| < η, for some small η > 0 that depends on P, on the boundary conditions, and on the domain Ω. Our results extend to other strongly elliptic systems and higher dimensions.  相似文献   

4.
Let D2 ì \mathbbR2 {D^2} \subset {\mathbb{R}^2} be a closed unit 2-disk centered at the origin O ? \mathbbR2 O \in {\mathbb{R}^2} and let F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus, topologically O is a “center” singularity. Let q:D2\{ O } ? ( 0, + ¥ ) \theta :D2\backslash \left\{ O \right\} \to \left( {0, + \infty } \right) be the function associating with each zO its period with respect to F. In general, such a function cannot be even continuously defined at O. Let also D+ (F) {\mathcal{D}^{+} }(F) be the group of diffeomorphisms of D 2 that preserve orientation and leave invariant each orbit of F. It is proved that θ smoothly extends to all of D 2 if and only if the 1-jet of F at O is a “rotation,” i.e., j1F(O) = - y\frac??x + x\frac??y {j^1}F(O) = - y\frac{\partial }{{\partial x}} + x\frac{\partial }{{\partial y}} . Then D+ (F) {\mathcal{D}^{+} }(F) is homotopy equivalent to a circle.  相似文献   

5.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

6.
We investigate the solvability of the instationary Navier–Stokes equations with fully inhomogeneous data in a bounded domain W ì \mathbbRn \Omega \subset {{\mathbb{R}}^{n}} . The class of solutions is contained in Lr(0, T; Hb, qw (W))L^{r}(0, T; H^{\beta, q}_{w} (\Omega)), where Hb, qw (W){H^{\beta, q}_{w}} (\Omega) is a Bessel-Potential space with a Muckenhoupt weight w. In this context we derive solvability for small data, where this smallness can be realized by the restriction to a short time interval. Depending on the order of this Bessel-Potential space we are dealing with strong solutions, weak solutions, or with very weak solutions.  相似文献   

7.
We consider the quasilinear problem
-ep\textdiv(|?u|p-2?u) + V(z)up-1 = f(u) + up*-1u ? W1,p(\mathbbRN), -\varepsilon^p\text{div}(|\nabla u|^{p-2}\nabla u) + V(z)u^{p-1} = f(u) + u^{p^*-1},\,u \in W^{1,p}\left(\mathbb{R}^N\right),  相似文献   

8.
Consider the class of C r -smooth SL(2, \mathbb R){SL(2, \mathbb R)} valued cocycles, based on the rotation flow on the two torus with irrational rotation number α. We show that in this class, (i) cocycles with positive Lyapunov exponents are dense and (ii) cocycles that are either uniformly hyperbolic or proximal are generic, if α satisfies the following Liouville type condition: |a-\fracpnqn| £ C exp (-qr+1+kn)\left|\alpha-\frac{p_n}{q_n}\right| \leq C {\rm exp} (-q^{r+1+\kappa}_{n}), where C >  0 and 0 < k < 1{0 < \kappa <1 } are some constants and \fracPnqn{\frac{P_n}{q_n}} is some sequence of irreducible fractions.  相似文献   

9.
We investigate the steady flow of a shear thickening generalized Newtonian fluid under homogeneous boundary conditions on a domain in \mathbbR2{\mathbb{R}^{2}}. We assume that the stress tensor is generated by a potential of the form H = h (|e(u)|){H = h (|\varepsilon (u)|)}, e(u){\varepsilon (u)} denoting the symmetric part of the velocity gradient. We prove the existence of strong solutions for a large class of functions h having the property that h′ (t)/t increases (shear thickening case).  相似文献   

10.
We study abstract evolution equations with nonlinear damping terms and source terms, including as a particular case a nonlinear wave equation of the type $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea where 0 < T £ ¥0\Omega is a bounded regular open subset of \mathbbRn\mathbb{R}^n, n 3 1n\ge 1, b,c > 0b,c>0, p > 2p>2, m > 1m>1. We prove a global nonexistence theorem for positive initial value of the energy when 1 < m < p,    2 < p £ \frac2nn-2. 1-Laplacian operator, q > 1q>1.  相似文献   

11.
In this paper we study the existence of heteroclinic cycles in generic unfoldings of nilpotent singularities. Namely we prove that any nilpotent singularity of codimension four in \mathbbR4{\mathbb{R}^4} unfolds generically a bifurcation hypersurface of bifocal homoclinic orbits, that is, homoclinic orbits to equilibrium points with two pairs of complex eigenvalues. We also prove that any nilpotent singularity of codimension three in \mathbbR3{\mathbb{R}^3} unfolds generically a bifurcation curve of heteroclinic cycles between two saddle-focus equilibrium points with different stability indexes. Under generic assumptions these cycles imply the existence of homoclinic bifurcations. Homoclinic orbits to equilibrium points with complex eigenvalues are the simplest configurations which can explain the existence of complex dynamics as, for instance, strange attractors. The proof of the arising of these dynamics from a singularity is a very useful tool, particularly for applications.  相似文献   

12.
We discuss a novel approach to the mathematical analysis of equations with memory, based on a new notion of state. This is the initial configuration of the system at time t = 0 which can be unambiguously determined by the knowledge of the dynamics for positive times. As a model, for a nonincreasing convex function ${G : \mathbb{R}^+ \to \mathbb{R}^+}We discuss a novel approach to the mathematical analysis of equations with memory, based on a new notion of state. This is the initial configuration of the system at time t = 0 which can be unambiguously determined by the knowledge of the dynamics for positive times. As a model, for a nonincreasing convex function G : \mathbbR+ ? \mathbbR+{G : \mathbb{R}^+ \to \mathbb{R}^+} such that
$G(0) = \lim_{s\to 0}G(s) > \lim_{s\to\infty}G(s) >0 $G(0) = \lim_{s\to 0}G(s) > \lim_{s\to\infty}G(s) >0  相似文献   

13.
14.
In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation ${{\rm d}X(t) = {\rm div} \left[\frac{\nabla X(t)}{|\nabla X(t)|}\right]{\rm d}t + X(t){\rm d}W(t) {\rm in} (0, \infty) \times \mathcal{O},}$ where ${\mathcal{O}}$ is a bounded and open domain in ${\mathbb{R}^N, N \geqq 1}$ and W(t) is a Wiener process of the form ${W(t) = \sum^{\infty}_{k = 1}\mu_{k}e_{k}\beta_{k}(t), e_{k} \in C^{2}(\overline{\mathcal{O}}) \cap H^{1}_{0}(\mathcal{O}),}$ and ${\beta_{k}, k \in \mathbb{N}}$ are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in ${L^2(\mathcal{O})}$ , it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions ${1\leqq N \leqq3}$ , which is another main result of this work.  相似文献   

15.
Let Ω be a bounded smooth domain in ${{\bf R}^N, N\geqq 3}Let Ω be a bounded smooth domain in RN, N\geqq 3{{\bf R}^N, N\geqq 3}, and Da1,2(W){D_a^{1,2}(\Omega)} be the completion of C0(W){C_0^\infty(\Omega)} with respect to the norm:
||u||a2W |x|-2a|?u|2dx.||u||_a^2=\int_\Omega |x|^{-2a}|\nabla u|^2{d}x.  相似文献   

16.
Let D2 ì \mathbbR2 {D^2} \subset {\mathbb{R}^2} be a closed unit 2-disk centered at the origin O ì \mathbbR2 O \subset {\mathbb{R}^2} and let F be a smooth vector field such that O is the unique singular point of F, and all other orbits of F are simple closed curves wrapping once around O: Thus, topologically, O is a “center” singularity. Let D+ (F) {\mathcal{D}^{+} }(F) be the group of all diffeomorphisms of D 2 that preserve the orientation and orbits of F. Recently, the author described the homotopy type of D+ (F) {\mathcal{D}^{+} }(F) under the assumption that the 1-jet j 1 F(O) of F at O is nondegenerate. In this paper, the degenerate case j 1 F(O) is considered. Under additional “nondegeneracy assumptions” on F, the path components of D+ (F) {\mathcal{D}^{+} }(F) with respect to distinct weak topologies are described. These conditions imply that, for each h ? D+ (F) h \in {\mathcal{D}^{+} }(F) , its path component in D+ (F) {\mathcal{D}^{+} }(F) is uniquely determined by the 1-jet of h at O.  相似文献   

17.
A body moves in a medium composed of noninteracting point particles; the interaction of the particles with the body is completely elastic. The problem is: find the body’s shape that minimizes or maximizes resistance of the medium to its motion. This is the general setting of the optimal resistance problem going back to Newton. Here, we restrict ourselves to the two-dimensional problems for rotating (generally non-convex) bodies. The main results of the paper are the following. First, to any compact connected set with piecewise smooth boundary B ì \mathbbR2{B \subset \mathbb{R}^2} we assign a measure ν B on ∂(conv B)×[ − π/2, π/2] generated by the billiard in \mathbbR2 \B{\mathbb{R}^2 \setminus B} and characterize the set of measures {ν B }. Second, using this characterization, we solve various problems of minimal and maximal resistance of rotating bodies by reducing them to special Monge–Kantorovich problems.  相似文献   

18.
We classify new classes of centers and of isochronous centers for polynomial differential systems in \mathbb R2{\mathbb R^2} of arbitrary odd degree d ≥ 7 that in complex notation z = x + i y can be written as
[(z)\dot] = (l+i) z + (z[`(z)])\fracd-7-2j2 (A z5+j[`(z)]2+j + B z4+j[`(z)]3+j + C z3+j[`(z)]4+j+D[`(z)]7+2j ),\dot z = (\lambda+i) z + (z \overline z)^{\frac{d-7-2j}2} \left(A z^{5+j} \overline z^{2+j} + B z^{4+j} \overline z^{3+j} + C z^{3+j} \overline z^{4+j}+D \overline z^{7+2j} \right),  相似文献   

19.
Our aim is to establish some sufficient conditions for the oscillation of the second-order quasilinear neutral functional dynamic equation
( p(t)( [ y(t) + r(t)y( t(t) ) ]D )g )D + f( t,y( d(t) ) = 0,    t ? [ t0,¥ )\mathbbT, {\left( {p(t){{\left( {{{\left[ {y(t) + r(t)y\left( {\tau (t)} \right)} \right]}^\Delta }} \right)}^\gamma }} \right)^\Delta } + f\left( {t,y\left( {\delta (t)} \right)} \right. = 0,\quad t \in {\left[ {{t_0},\infty } \right)_\mathbb{T}},  相似文献   

20.
We investigate Kato’s method for parabolic equations with a quadratic non-linearity in an abstract form. We extract several properties known from linear systems theory which turn out to be the essential ingredients for the method. We give necessary and sufficient conditions for these conditions and provide new and more general proofs, based on real interpolation. In application to the Navier–Stokes equations, our approach unifies several results known in the literature, partly with different proofs. Moreover, we establish new existence and uniqueness results for rough initial data on arbitrary domains in \mathbbR3{\mathbb{R}}^{3} and irregular domains in \mathbbRn{\mathbb{R}}^{n}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号