首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Let k be a fixed, positive integer. We give an algorithm which computes the Tutte polynomial of any graph G of treewidth at most k in time O(n2+7 log2 c), where c is twice the number of partitions of a set with 3k + 3 elements and n the number of vertices of G.  相似文献   

2.
Let G be a k-edge-connected graph of order n. If k4log2 n then G has a nowhere-zero 3-flow.  相似文献   

3.
A connected graph is doubly connected if its complement is also connected. The following Ramsey-type theorem is proved in this paper. There exists a function h(n), defined on the set of integers exceeding three, such that every doubly connected graph on at least h(n) vertices must contain, as an induced subgraph, a doubly connected graph, which is either one of the following graphs or the complement of one of the following graphs:
(1) Pn, a path on n vertices;
(2) K1,ns, the graph obtained from K1,n by subdividing an edge once;
(3) K2,ne, the graph obtained from K2,n by deleting an edge;
(4) K2,n+, the graph obtained from K2,n by adding an edge between the two degree-n vertices x1 and x2, and a pendent edge at each xi.

Two applications of this result are also discussed in the paper.  相似文献   


4.
We study the problem of designing fault-tolerant routings with small routing tables for a k-connected network of n processors in the surviving route graph model. The surviving route graph R(G,ρ)/F for a graph G, a routing ρ and a set of faults F is a directed graph consisting of nonfaulty nodes of G with a directed edge from a node x to a node y iff there are no faults on the route from x to y. The diameter of the surviving route graph could be one of the fault-tolerance measures for the graph G and the routing ρ and it is denoted by D(R(G,ρ)/F). We want to reduce the total number of routes defined in the routing, and the maximum of the number of routes defined for a node (called route degree) as least as possible. In this paper, we show that we can construct a routing λ for every n-node k-connected graph such that n2k2, in which the route degree is , the total number of routes is O(k2n) and D(R(G,λ)/F)3 for any fault set F (|F|<k). In particular, in the case that k=2 we can construct a routing λ′ for every biconnected graph in which the route degree is , the total number of routes is O(n) and D(R(G,λ′)/{f})3 for any fault f. We also show that we can construct a routing ρ1 for every n-node biconnected graph, in which the total number of routes is O(n) and D(R(G1)/{f})2 for any fault f, and a routing ρ2 (using ρ1) for every n-node biconnected graph, in which the route degree is , the total number of routes is and D(R(G2)/{f})2 for any fault f.  相似文献   

5.
A total cover of a graph G is a subset of V(G)E(G) which covers all elements of V(G)E(G). The total covering number 2(G) of a graph G is the minimum cardinality of a total cover in G. In [1], it is proven that 2(G)[n/2] for a connected graph G of order n. Here we consider the extremal case and give some properties of connected graphs which have a total covering number [n/2]. We prove that such a graph with even order has a 1-factor and such a graph with odd order is factor-critical.  相似文献   

6.
Let S1 and S2 be two (k-1)-subsets in a k-uniform hypergraph H. We call S1 and S2 strongly or middle or weakly independent if H does not contain an edge eE(H) such that S1e ≠∅ and S2e ≠∅ or eS1S2 or eS1S2, respectively. In this paper, we obtain the following results concerning these three independence. (1) For any n ≥ 2k2-k and k ≥ 3, there exists an n-vertex k-uniform hypergraph, which has degree sum of any two strongly independent (k-1)-sets equal to 2n-4(k-1), contains no perfect matching; (2) Let d ≥ 1 be an integer and H be a k-uniform hypergraph of order nkd+(k-2)k. If the degree sum of any two middle independent (k-1)-subsets is larger than 2(d-1), then H contains a d-matching; (3) For all k ≥ 3 and sufficiently large n divisible by k, we completely determine the minimum degree sum of two weakly independent (k-1)-subsets that ensures a perfect matching in a k-uniform hypergraph H of order n.  相似文献   

7.
《Discrete Mathematics》1999,200(1-3):137-147
We form squares from the product of integers in a short interval [n, n + tn], where we include n in the product. If p is prime, p|n, and (2p) > n, we prove that p is the minimum tn. If no such prime exists, we prove tn √5n when n> 32. If n = p(2p − 1) and both p and 2p − 1 are primes, then tn = 3p> 3 √n/2. For n(n + u) a square > n2, we conjecture that a and b exist where n < a < b < n + u and nab is a square (except n = 8 and N = 392). Let g2(n) be minimal such that a square can be formed as the product of distinct integers from [n, g2(n)] so that no pair of consecutive integers is omitted. We prove that g2(n) 3n − 3, and list or conjecture the values of g2(n) for all n. We describe the generalization to kth powers and conjecture the values for large n.  相似文献   

8.
Bipartite dimensions and bipartite degrees of graphs   总被引:2,自引:0,他引:2  
A cover (bipartite) of a graph G is a family of complete bipartite subgraphs of G whose edges cover G's edges. G'sbipartite dimension d(G) is the minimum cardinality of a cover, and its bipartite degree η(G) is the minimum over all covers of the maximum number of covering members incident to a vertex. We prove that d(G) equals the Boolean interval dimension of the irreflexive complement of G, identify the 21 minimal forbidden induced subgraphs for d 2, and investigate the forbidden graphs for d n that have the fewest vertices. We note that for complete graphs, d(Kn) = [log2n], η(Kn) = d(Kn) for n 16, and η(Kn) is unbounded. The list of minimal forbidden induced subgraphs for η 2 is infinite. We identify two infinite families in this list along with all members that have fewer than seven vertices.  相似文献   

9.
Xuding Zhu 《Discrete Mathematics》1998,190(1-3):215-222
Suppose G is a graph. The chromatic Ramsey number rc(G) of G is the least integer m such that there exists a graph F of chromatic number m for which the following is true: for any 2-colouring of the edges of F there is a monochromatic subgraph isomorphic to G. Let Mn = min[rc(G): χ(G) = n]. It was conjectured by Burr et al. (1976) that Mn = (n − 1)2 + 1. This conjecture has been confirmed previously for n 4. In this paper, we shall prove that the conjecture is true for n = 5. We shall also improve the upper bounds for M6 and M7.  相似文献   

10.
Let D = (V1, V2; A) be a directed bipartite graph with |V1| = |V2| = n 2. Suppose that dD(x) + dD(y) 3n + 1 for all x ε V1 and y ε V2. Then D contains two vertex-disjoint directed cycles of lengths 2n1 and 2n2, respectively, for any positive integer partition n = n1 + n2. Moreover, the condition is sharp for even n and nearly sharp for odd n.  相似文献   

11.
A graph G on at least 2n + 2 vertices in n-extendable if every set of n independent edges extends to (i.e., is a subset of) a perfect matching in G. It is known that no planar graph is 3-extendable. In the present paper we continue to study 2-extendability in the plane. Suppose independent edges e1 and e2 are such that the removal of their endvertices leaves at least one odd component Co. The subgraph G[V(Co) V(e1) V(e2)] is called a generalized butterfly (or gbutterfly). Clearly, a 2-extendable graph can contain no gbutterfly. The converse, however, is false.

We improve upon a previous result by proving that if G is 4-connected, locally connected and planar with an even number of vertices and has no gbutterfly, it is 2-extendable. Sharpness with respect to the various hypotheses of this result is discussed.  相似文献   


12.
We present a network of delay log2N, whose comparators have only log2N different lengths with maximum length N/2. This network is log-sequential in that it will sort N data items when they are passed through it log2Ntimes. The design, which is related to the Batcher odd-even merge, is distinctly different from the first known example of a log-delay log-sequential network, due to Dowd, Perl, Rudolf, and Saks. It is quite probably the best possible sorting network.  相似文献   

13.
Neighborhood unions and cyclability of graphs   总被引:1,自引:0,他引:1  
A graph G is said to be cyclable if for each orientation of G, there exists a set S of vertices such that reversing all the arcs of with one end in S results in a hamiltonian digraph. Let G be a 3-connected graph of order n36. In this paper, we show that if for any three independent vertices x1, x2 and x3, |N(x1)N(x2)|+|N(x2)N(x3)|+|N(x3)N(x1)|2n+1, then G is cyclable.  相似文献   

14.
Let πi :EiM, i=1,2, be oriented, smooth vector bundles of rank k over a closed, oriented n-manifold with zero sections si :MEi. Suppose that U is an open neighborhood of s1(M) in E1 and F :UE2 a smooth embedding so that π2Fs1 :MM is homotopic to a diffeomorphism f. We show that if k>[(n+1)/2]+1 then E1 and the induced bundle f*E2 are isomorphic as oriented bundles provided that f have degree +1; the same conclusion holds if f has degree −1 except in the case where k is even and one of the bundles does not have a nowhere-zero cross-section. For n≡0(4) and [(n+1)/2]+1<kn we give examples of nonisomorphic oriented bundles E1 and E2 of rank k over a homotopy n-sphere with total spaces diffeomorphic with orientation preserved, but such that E1 and f*E2 are not isomorphic oriented bundles. We obtain similar results and counterexamples in the more difficult limiting case where k=[(n+1)/2]+1 and M is a homotopy n-sphere.  相似文献   

15.
We study the problem of selecting one of the r best of n rankable individuals arriving in random order, in which selection must be made with a stopping rule based only on the relative ranks of the successive arrivals. For each r up to r=25, we give the limiting (as n→∞) optimal risk (probability of not selecting one of the r best) and the limiting optimal proportion of individuals to let go by before being willing to stop. (The complete limiting form of the optimal stopping rule is presented for each r up to r=10, and for r=15, 20 and 25.) We show that, for large n and r, the optical risk is approximately (1−t*)r, where t*≈0.2834 is obtained as the roof of a function which is the solution to a certain differential equation. The optimal stopping rule τr,n lets approximately t*n arrivals go by and then stops ‘almost immediately’, in the sense that τr,n/nt* in probability as n→∞, r→∞  相似文献   

16.
Yasuo Teranishi   《Discrete Mathematics》2003,260(1-3):255-265
For a connected graph G with n vertices, let {λ12,…,λr} be the set of distinct positive eigenvalues of the Laplacian matrix of G. The Hoffman number μ(G) of G is defined by μ(G)=λ1λ2…λr/n. In this paper, we study some properties and applications of the Hoffman number.  相似文献   

17.
Optimal diagonal scaling of an n×n matrix A consists in finding a diagonal matrix D that minimizes a condition number of AD. Often a nearly optimal scaling of A is achieved by taking a diagonal matrix D1 such that all diagonal elements of D1ATAD1 are equal to one. It is shown in this paper that the condition number of AD1 can be at least (n/2)1/2 times the minimal one. Some questions for a further research are posed.  相似文献   

18.
In this paper, we shall prove a conjecture of Mills: for two (k+1)-connected matroids whose symmetric difference between their collections of bases has size at most k, there is a matroid that is obtained from one of these matroids by relaxing n1 circuit-hyperplanes and from the other by relaxing n2 circuit-hyperplanes, where n1 and n2 are non-negative integers such that n1+n2k  相似文献   

19.
N people select a loser by flipping coins. Recursively, the 0-party continues until the loser is found. Among other things, it is shown that this process stops on the average after about log2 N steps. Nevertheless, this very plausible result requires rather advanced methods.  相似文献   

20.
Let sk(n) be the largest integer such that every n-point interval order with no antichain of more than k points includes an sk(n)-point semiorder. When k = 1, s1(n) = n since all interval orders with no two-point antichains are chains. Given (c1,...,c5) = (1, 2, 3, 4), it is shown that s2(n) = cn for n 4, s3(n) = cn for n 5, and for all positive n, s2 (n+4) =s2(n)+3, s3(n+5) = s3(n)+3. Hence s2 has a repeating pattern of length 4 [1, 2, 3, 3; 4, 5, 6, 6; 7, 8, 9, 9;...], and s3 has a repeating pattern of length 5 [1, 2, 3, 3, 4; 4, 5, 6, 6, 7; 7, 8, 9, 9, 10;...].

Let s(n) be the largest integer such that every n-point interval order includes an s(n)-point semiorder. It was proved previously that for even n from 4 to 14, and that s(17) = 9. We prove here that s(15) = s(16) = 9, so that s begins 1, 2, 3, 3, 4, 4,..., 8, 8, 9, 9, 9. Since s(n)/n→0, s cannot have a repeating pattern.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号