首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The applicability of capillary electrophoresis (CE) in combination with atmospheric pressure ionization mass spectrometry (API-MS) is demonstrated for the determination of organic acids and in particular for haloacetic acids. CE-conditions, sheath flow and MS-parameters were optimized with respect to the separation of the analytes and mass spectrometric sensitivity. CE/MS turned out to be an attractive alternative for the determination of haloacetic acids to existing methods based on GC-ECD. Employing CE/MS derivatization is not necessary which saves time and avoids possible sources of errors. In the present work the sample pre-treatment is performed by liquid-liquid extraction using methyl tert.-butyl ether as the extraction solvent. The organic phase is brought to dryness in a stream of nitrogen gas and the residue is dissolved in methanol and analyzed by CE/MS using a mixture of 2-propanol/water 80?:?20 containing triethylamine as the sheath liquid in the interface. Best results for the separation of all nine possible bromo- and chloroacetic acids together with two internal standards are obtained with a carrier electrolyte consisting of ammonium acetate/acetic acid in methanol; to resolve the strongly acidic trihaloacetic acids as well as the less acidic monohaloacetic acids, a careful optimization of the acetic acid content is necessary. The method was applied to the determination of haloacetic acids in real water samples. With optimized CE and MS conditions detection limits between 0.3 and 7.6 μg/L in the original water samples were achieved, employing a sample volume of 30 mL.  相似文献   

2.
An analytical method is described to determine simultaneously cis/trans N-n-alkyl-dimethylmorpholines and their metabolites, the 4-(ω-carboxy-n-alkyl) cis/trans-2,6-dimethylmorpholines by pyrolytic alkylation and high resolution GC/MS in aqueous systems and sediments. The substances in the sediment phase were analyzed by GC/MS after extraction with methanol and water, substances in the water phase could be directly determined by GC/MS. The analytical procedure also allows the determination of further carboxylic acids in complex aqueous systems. Received: 9 April 1996 / Revised: 10 June 1996 / Accepted: 14 June 1996  相似文献   

3.
Negative ionization electrospray liquid chromatography mass spectrometry was developed for the simultaneous determination of all nine haloacetic acids containing bromine and chlorine. Haloacetic acids were separated on a crosslinked polystyrene resin column using 3% acetic acid dissolved in acetonitrile:water (20:80) as mobile phase. The precision of this method varied from ±2.2 to ±7.1% for nine haloacetic acids. In addition, quantitative results obtained with spiked water samples at three different concentrations are described. The limit of detection of the proposed method using 200 mL of water samples was between 0.003 and 0.070 μg/L. This method was successfully applied to the trace determination of haloacetic acids in waste water, river water, and seawater.  相似文献   

4.
A simple and cost-effective capillary electrophoresis/mass spectrometric (CE/MS) method for the analysis of small carboxylic acids including succinate, malate, tartarate, maleinate and citrate, is described. All CE/MS experiments were performed with uncoated fused-silica capillaries and with alkaline volatile buffer solution (ammonium formate buffer, pH 10). Since sheath liquids have significant effects on the sensitivity in typical CE/MS applications, the effects of type and flow rate of the sheath liquids on the sensitivity of carboxylic acids were investigated. As the result, the best sensitivity was obtained with the alkaline sheath liquid (5 mM ammonium hydroxide in water/methanol (50/50, v/v) solution) at 6 μl min−1. With the alkaline volatile buffer solution, sufficient electroosmotic flow (EOF) to carry all small carboxylic acids toward the cathode (MS side) was obtained, although all analytes had different electrophoretic mobilities toward the anode (the CE inlet). Taking advantage of the relatively higher EOF velocity, several carboxylic acids could be detected by MS in ESI-negative mode with a short analysis time. The R.S.D. values (n=5) for the migration time and the peak area of the carboxylic acids tested were less than 0.6 and 4.2%, respectively. The method was applied to the CE/MS analysis of carboxylic acids in apple juice to demonstrate the applicability to real samples.  相似文献   

5.
A method based on the coupling of capillary electrophoresis with mass spectrometry (CE/MS) was developed for the monitoring of 3-quinuclidinol and its four N-alkyl derivatives (methyl, ethyl, propyl and isopropyl derivatives). A fragmentation study (collision-induced dissociation of ions in an ion trap) and optimization of the ion optics set-up for CE/MS experiments using direct infusion of a methanolic solution of the standards into the mass spectrometer were carried out in advance. Molecular ions of all quaternary compounds and the quasi-molecular ion [M + H]+ of free 3-quinuclidinol prevail in the mass spectra. In the MS/MS of propyl and isopropyl derivatives, the elimination of the alkyl chain dominates, leading to the ion at m/z 128. The fragmentation of the other compounds is more complex. Previous CE separation of the mixture of isobaric propyl and isopropyl derivatives is necessary for their unambiguous identification. A 10 mM ammonium acetate buffer (pH 4.0) is the optimum running electrolyte, allowing the CE separation of methyl, ethyl, propyl and isopropyl derivatives. A 0.5% (v/v) solution of acetic acid in methanol provides sufficient detection sensitivity when used as the sheath liquid. Limits of detection of 0.1 ppm for 3-quinuclidinol and 0.05 ppm for quaternary derivatives were achieved under the optimum conditions. The optimized method was applied to the determination of 3-quinuclidinol and related quaternary derivatives spiked into a sample of pond water. The experimental set-up for CE/MS/MS was investigated, which strongly increases the identification capability of the technique.  相似文献   

6.
Conditions for the separation and determination of benzalkonium chloride (BAC) homologues by CE with UV-detection and CE coupled to MS (IT) using electrospray as ionization source were established. The separation was performed using fused-silica capillaries of 50 microm id and 100 mM acetic acid-ammonium acetate buffer solution at pH 4.5 with 80% of ACN as carrier electrolyte. CE-MS coupling parameters were optimized and methanol-10 mM acetic acid (90:10 v/v) was selected as sheath liquid. Detection limits, based on an S/N of 3:1, were calculated, and values between 0.8 and 1.3 mg/L with CE-ESI/MS and around 0.5 mg/L with CE-ESI-MS/MS, using hydrodynamic injection (15 s, 3.5 kPa), were obtained. Good run-to-run and day-to-day precisions on concentration were achieved with RSDs lower than 8%. Quantitative analysis was carried out by the internal standard method and the calibration curves showed good linearities (r(2) > 0.98). The CE-ESI-MS/MS method was successfully applied to the analysis of BAC in different ophthalmic solutions, allowing the direct determination, identification and confirmation of the BAC homologues presented in these samples.  相似文献   

7.
The capillary electrophoretic-mass spectrometric analysis (CE-MS) of catecholamines was optimized with coaxial sheath flow interface and electrospray ionization (ESI). The parameters studied included the sheath liquid composition and its flow rate, separation conditions in ammonium acetate buffer together with the ESI and cone voltages as mass spectrometric parameters. In addition, the effect of ESI voltage on injection as well as the siphoning effect were considered. The optimized conditions were a sheath liquid composition of methanol-water (80:20 v/v) with 0.5% acetic acid, with a flow rate of 6 microL/min. The capillary electrophoretic separation parameters were optimized with 50 mM ammonium acetate buffer, pH 4.0, to +25 kV separation voltage together with a pressure of 0.1 psi. The most intensive signals were obtained with an ESI voltage of +4.0 kV and a cone voltage of +20 V. The nonactive ESI voltage during injection as well as avoidance of the siphoning effect increased the sensitivity of the MS detection considerably. The use of ammonium hydroxide as the CE capillary conditioning solution instead of sodium hydroxide did not affect the CE-MS performance, but allowed the conditioning of the capillary between analyses to be performed in the MS without contaminating the ion source.  相似文献   

8.
The determination of phenoxyalkanoic acids in different types of water within the limits of the European drinking water guideline is described. Most of these acids are used world-wide as herbicides and growth regulators. Compounds having an acidic hydrogen in their structure are very strongly adsorbed on Carbopack B, a special graphitized carbon black. This effect was used for the transformation of analytes to methyl esters directly on the surface of the adsorbent, using trimethylsulfonium hydroxide (TMSH) as derivatization reagent. After elution with ethyl acetate the derivatives were identified and quantified by gas chromatography/mass spectrometry (GC/MS). The interaction between analyte and adsorbent and the yields of the derivatization step are influenced by the length of the alkanoic chain. Received: 21 June 1999 / Revised: 23 August 1999 / Accepted: 24 August 1999  相似文献   

9.
 The work presented in this paper deals with the combination of capillary electrophoresis (CE) with electrospray mass spectrometry (MS) for the determination of drug residues in water. CE/MS methods have been developed based on either aqueous or non-aqueous ammonium acetate solutions as the carrier electrolyte for the separation of selected drugs. The different separation conditions were compared in terms of selectivity and detection limits; both aqueous and non-aqueous CE proved to be suitable for the present analytical task, exhibiting detection limits between 3 and 93 μg/dm3 (injected standard concentration) corresponding to concentrations between 5 and 19 ng/dm3 in the sample. A combination of liquid-liquid extraction and solid-phase extraction was investigated for sample pretreatment, yielding enrichment factors of 10000. The applicability of CE/MS was demonstrated for the analysis of several river water samples.  相似文献   

10.
建立了测定饮用水中5种卤乙酸的检测方法。水样经硫酸酸化、叔丁基甲醚萃取、硫酸-甲醇衍生化后,用气相色谱电子捕获检测器测定。5种卤乙酸平均加标回收率为74.5%~104.0%,相对标准偏差为3.1%~11.0%(n=6),最低检出限为0.3~15.3μg/L。该法适用于饮用水中卤乙酸的测定。  相似文献   

11.
Summary.  The work presented in this paper deals with the combination of capillary electrophoresis (CE) with electrospray mass spectrometry (MS) for the determination of drug residues in water. CE/MS methods have been developed based on either aqueous or non-aqueous ammonium acetate solutions as the carrier electrolyte for the separation of selected drugs. The different separation conditions were compared in terms of selectivity and detection limits; both aqueous and non-aqueous CE proved to be suitable for the present analytical task, exhibiting detection limits between 3 and 93 μg/dm3 (injected standard concentration) corresponding to concentrations between 5 and 19 ng/dm3 in the sample. A combination of liquid-liquid extraction and solid-phase extraction was investigated for sample pretreatment, yielding enrichment factors of 10000. The applicability of CE/MS was demonstrated for the analysis of several river water samples. Received August 25, 2000. Accepted October 17, 2000  相似文献   

12.
In the present study, highly efficient and simple dispersive solid‐phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid‐phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH?4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid‐phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05–100 μg/L with detection limits in the range of 0.006–0.05 μg/L. The relative standard deviations were 0.33–3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids.  相似文献   

13.
Analyses of alkaloids in different products by NACE-MS   总被引:1,自引:0,他引:1  
Chiu CW  Liang HH  Huang HY 《Electrophoresis》2007,28(22):4220-4226
A simple method for the separation and characterization of five nicotine-related alkaloids by NACE employing UV and MS detections is described here for the first time. Several factors, including NACE parameters (compositions of running solution) and MS parameters (such as nature and flow rate of sheath liquid, pressure of nebulization gas, and flow rate of dry gas), were optimized in order to obtain both an adequate CE separation and high MS signals for the alkaloid compounds used in this study. A reliable CE separation of five alkaloids was achieved in 50 mM ammonium formate that was dissolved in an ACN/methanol mixture (50:50, v/v) of pH* 4.0 (apparent pH 4.0). The optimal electrospray MS measurement was carried out in the positive ionization mode using a coaxial sheath liquid composed of isopropyl alcohol and water in the ratio of 80:20 v/v at a flow rate of 180 microL/h. In addition, the proposed NACE method was also applied in the analyses of alkaloids in several products including chewing gums, beverages, and tobaccos. This NACE-MS method was found to provide a better detection ability and separation resolution for the analysis of nicotine alkaloids when compared to other aqueous CE-MS reports.  相似文献   

14.
A simple, rapid and efficient capillary electrophoresis-mass spectrometry (CE-MS) method was developed to analyze urinary nucleosides for the first time. The composition of CE buffer and MS parameters were systematically optimized. The optimum buffer was 150 mM acetic acid containing 15% methanol and 15% ethanol. The optimum MS parameters were: methanol containing 0.5% acetic acid was selected as the sheath liquid and the flow rate was 5 microL/min; the flow rate and temperature of drying gas were 6L/min and 150 degrees C, respectively; the pressure of nebulizing gas was 2 psig; and the fragmentor and ESI voltage were 100 V and 4000 V, respectively. Under the optimum CE-MS conditions, the urinary nucleosides were separated within 18 min. The linearity between the relative peak areas and the corresponding concentration of nine nucleosides markers were excellent. The limits of detection (S/N=3) of markers were 0.00862-3.82 nmol/mL. The optimum CE-MS method was applied to analyze urine from 20 bladder cancer patients and 20 healthy volunteers. Considering the standards of many nucleosides cannot be obtained, it is not the ratios of the concentrations of nucleosides to that of creatinine in the literatures, but the ratios of the relative peak area of nucleosides to the concentration of creatinine that used for pattern recognition. And, the statistical analysis result indicated this method was feasible.  相似文献   

15.
 Aminobenzoic acids are of major interest in clinical analysis, but their determination in environmental samples has been rarely done. Therefore a method for the determination of 10 aminobenzoic acids in water has been developed, using high-performance liquid chromatography with combined diode array and fluorescence detection. A separation of the analytes has been achieved with a buffer pH 3/methanol gradient. The general elution order has been m-substituted<p-subst.<o-subst. aminobenzoic acids. UV and fluorescence data are presented. In a highly polluted water sample of the former ammunition plant Stadtallendorf/Hessen, 4-aminobenzoic acid, 2-amino- benzoic acid and 2-amino-4-nitrobenzoic acid have been detected. After passing a charcoal filter, only the concentration of 4-aminobenzoic acid in a sample from the same site has been above the detection limit. Besides the ten analytes investigated, several unknown compounds have been present in the samples. Received: 15 January 1996/Accepted 20 February 1996  相似文献   

16.
 Aminobenzoic acids are of major interest in clinical analysis, but their determination in environmental samples has been rarely done. Therefore a method for the determination of 10 aminobenzoic acids in water has been developed, using high-performance liquid chromatography with combined diode array and fluorescence detection. A separation of the analytes has been achieved with a buffer pH 3/methanol gradient. The general elution order has been m-substituted<p-subst.<o-subst. aminobenzoic acids. UV and fluorescence data are presented. In a highly polluted water sample of the former ammunition plant Stadtallendorf/Hessen, 4-aminobenzoic acid, 2-amino- benzoic acid and 2-amino-4-nitrobenzoic acid have been detected. After passing a charcoal filter, only the concentration of 4-aminobenzoic acid in a sample from the same site has been above the detection limit. Besides the ten analytes investigated, several unknown compounds have been present in the samples. Received: 15 January 1996/Accepted 20 February 1996  相似文献   

17.
A nonaqueous CE‐IT MS with a nanospray ionization interface method was developed for the identification and quantification of tetrandrine (TET), fangchinoline (FAN), and sinomenine (SIN) using berberine as internal standard. The TET, FAN, and SIN standard solutions were directly infused into IT‐MS for collecting MS1–3 spectra. The major fragment ions of analytes were confirmed and possible main cleavage pathways of fragment ions were studied. A bare fused‐silica capillary was used for separation of the analytes. A sheath liquid (50% aqueous methanol containing 0.2% acetic acid) to the capillary effluent with a nanoelectrospray ionization interface was added. Separation buffer comprised 80 mM solution of ammonium acetate, in a mixture of 70% methanol, 20% ACN, and 10% water, which also contained 1% acetic acid. The CE‐MS method was validated for linearity, sensitivity, accuracy, and precision, and then used to determine the content of the above components. The detection limits of TET, FAN, and SIN are 0.05, 0.08, and 0.15μg/mL, respectively. The precision was no more than 4.67% and the mean recovery of the analytes were 95.36–99.24%. This method was successfully applied to determine TET, FAN, and SIN in real samples radix Stephaniae tetrandrae and rhizomes of Menispermum dauricum.  相似文献   

18.
In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH3OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V ESI, +4.50 kV), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r >0.99). LODs in the range of 16-172 micromol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H+ form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.  相似文献   

19.
A capillary electrophoresis (CE) method using non-aqueous (NA) separation solutions combined with an ion trap mass spectrometer (MS and MS/MS) as detection device is presented for the separation, identification and quantification of isoquinoline alkaloids from Fumaria officinalis. The best results were obtained with a mixture of acetonitrile-methanol (9:1, v/v) containing 60mM ammonium acetate and 2.2M acetic acid as running electrolyte and an applied voltage of 30 kV. Electrospray MS measurements were performed in the positive ionization mode with isopropanol-water (1:1, v/v) as sheath liquid at a flow rate of 3 microl/min. Alkaloids were detected as [M+H](+)-ions and showed typical fragmentation patterns in MS/MS experiments. The developed assay was used for the quantification of seven isoquinoline alkaloids representing different structural subtypes in Fumariae herba extracts and F. herba containing phytopharmaceuticals.  相似文献   

20.
 The separation of carnitine, acetylcarnitine and palmitoylcarnitine as ADAM (9-anthryldiazo-methane) derivatives was performed using capillary electrophoresis. A buffer system with 90% methanol and various amounts of phosphoric acid and micelle forming SDS was optimized with respect to the best resolution of the carnitine derivatives. A detection limit of 10 μmol/l or 32 ng carnitine was determined by laser induced fluorescence detection. Under optimized conditions low carnitine contents in acylcarnitine standards have been determined. Received: 30 May 1996/Accepted: 17 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号