首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The kinetics of capillary imbibition into sedimentary rocks has been measured experimentally and calculated with a model that has been described previously by Hammecker and colleagues (1993). The validity of this model has been discussed and compared to other models. Three limestones, two clean sandstones and three clayey sandstones have been studied. The capillary processes are discussed as a function of their petrography and the pore structures. The role of the grain surface, described by the specific surface area, has been especially studied. The influence of clay coating on detrital grains on capillary processes has been quantified.Nomenclature A weight increase rate by capillary imbibition (A=W/(S 1t)) - B capillary rise rate (B=l/t) - l height of the capillary fringe or the meniscus over the free water level - g gravitational constant - L height of the geometrical elements - P a pressure in the air - P c capillary pressure - P w pressure in the water - Q flow rate - N l free porosity - Nt total porosity - r radius of the pore (meniscus) - r 1 pore access radius (neck) - R pore radius (widening) - R s particle radius - S specific surface area - S 1 macroscopical area of the sample surface throughout which imbibition occurs - t time - W weight - z height - surface tension - dynamic viscosity - contact angle - density - r true density  相似文献   

2.
Viscous and Joule dissipation effects are considered on MHD free convection flow past a semi-infinite isothermal vertical plate under a uniform transverse magnetic field. Series solutions in powers of a dissipation number (=gx/c p) have been employed and the resulting ordinary differential equations have been solved numerically. The velocity and temperature profiles are shown on graphs and the numerical values of 1(0)/0(0) (, temperature function) have been tabulated. It is observed that the dissipation effects in the MHD case become more dominant with increasing values of the magnetic field parameter (=M 2/(Gr x /4)1/2) and the Prandtl number.  相似文献   

3.
Imbibition in glass micromodels for air-mercury and water-oil systems occurs by wetting phase (wp) cluster growth and frontal drive processes. Lower capillary number and higher wetting phase (wp) saturation at the start of imbibition favour cluster growth.Imbibition experiments for both fluid systems show that the rules of nwp withdrawal are related to pore size and to fluid topology as well as to aspect ratio. The emptying of a pore is favoured by small size, small aspect ratio (size rules), and fewer connected throats occupied by nonwetting phase (nwp) (fluid topology rules).The relative importance of fluid topology compared with pore size in determining the sequence of nwp withdrawal from pores is affected by the initial nwp saturation, pore size variability, pore-throat size ratio, pore and throat shape and contact angle. High initial nwp saturation, small variability of pore size and small pore-throat diameter ratio are all factors which increase the effects of fluid topology in determining nwp withdrawal sequence. Under these conditions, nwp displacement efficiency is larger because withdrawal occurs first from dead-end branches without breaking the continuity of the nwp conducting pathways to the nwp sink. The high nwp displacement efficiency obtained in unconsolidated sands may be explained by the importance of topology rules during imbibition in these low aspect ratio media.Roman Letters D effective diameter of pore or throat given by 2 ÷F()(1/x + 1/y),m - F() nondimensional term which varies as a function of cross-sectional shape (Lenormandet al., 1983) - L external dimension of the network (width or length), m - N ca capillary number in the network, dimensionless - nwp nonwetting phase - P any capillary pressure, Pa - P I1 apillary pressure for nwp to withdraw from a pore which has one connected throat occupied by nwp, Pa - P I2 capillary pressure for nwp to withdraw from a pore which has two adjacent connected throats occupied by nwp, Pa - Q total volume flow rate in the network, m3/s - S wi percent of pore volume occupied by wp at the end of drainage and start of imbibition, dimensionless - S ni percent of pore volume occupied by nwp at the end of drainage and start of imbibition, i.e. 100 -S wi, dimensionless - S nr percent of pore volume occupied by trapped nwp at the end of imbibition, dimensionless - v velocity, m/s - wp wetting phase - X I diameter ofI2 interface in plan, m - X P diameter of pore in plan, m - X T width of throat, m - Y P depth of pore, m - Y T depth of throat, m - Z number of throats connected to each pore (coordination number) Greek Letters interfacial tension, N/m - contact angle, degrees - viscosity, Pa · s  相似文献   

4.
Summary The viscous properties of calcium carbonate filled polyethylene and polystyrene melts were examined. The relative vircosity r defined in the previous paper gave an asymtptotic value( r)l in the range of the shear stress below 105 dyne/cm2.( r)l of the calcium carbonate filled system was higher than that of the glass beads or glass balloons filled system at the same volume fraction of the filler. Maron-Pierce equation with 0 = 0.44 was able to approximate the( r)l — relationship. However, it was deduced here that the high value of( r)l of calcium carbonyl filled system was due to the apparent increase of and this increase was attributed to the fixed polymer layer formed on the powder particle. By assuming the particle as a sphere with a diameter of 2 µm, the thickness of the fixed polymer layer was estimated as about 0.17 µm. The yield stress estimated from the Casson's plots increased exponentially with.
Zusammenfassung Es wurden die viskosen Eigenschaften von Polyäthylen-und Polystyrol-Schmelzen untersucht, die mit Kalziumkarbonat-Teilchen gefüllt waren. Für die relative Viskosität r, wie sie in einer vorangegangenen Veröffentlichung definiert worden war, ergab sich bei Schubspannungen unterhalb 105 dyn/cm2 ein asymptotischer Wert( r)l. Dieser war bei den mit Kalziumkarbonat gefüllten Schmelzen höher als bei Schmelzen, die bis zur gleichen Volumenkonzentration mit Glaskugeln oder Glasballons gefüllt waren. Die ( r) l -Abhängigkeit ließ sich durch eine Gleichung nachMaron und Pierce mit 0 = 0,44 beschreiben. Es wurde jedoch geschlossen, daß der hohe( r)l-Wert der mit Kalziumkarbonat gefüllten Schmelzen auf eine scheinbare Zunahme von zurückzuführen ist, verursacht durch eine feste Polymerschicht auf der Teilchenoberfläche. Unter Annahme kugelförmiger Teilchen mit einem Durchmesser von 2 µm ließ sich die zugeordnete Schichtdicke zu 0,17 µm abschätzen. Die mittels der Casson-Beziehung geschätzte Fließspannung ergab eine exponentielle-Abhängigkeit.


With 7 figures and 1 table  相似文献   

5.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

6.
The wedge subjected to tractions: a paradox re-examined   总被引:2,自引:0,他引:2  
The classical two-dimensional solution for the stress distribution in an elastic wedge loaded by a uniform pressure on one side of the wedge becomes infinite when the wedge angle 2 satisfies the equation tan 235-1. This paradox was resolved recently by Dempsey who obtained a solution which is bounded at 235-2. However, for not equal but very close to 235-3, the classical solution can still be very large as approaches 235-4. In this paper we re-examine the paradox. We obtain a solution which remains bounded as approaches 235-5 and reproduces Dempsey's solution in the limit 235-6. At 235-7 the stress distribution contains a (ln r) term for general loadings. The (ln r) term disappears under a special loading and the stresses are bounded for all r. Moreover, the solution is not unique. In other words, for the wedge angle 235-8 under a special loading, infinitely many solutions exist for which the stresses are bounded for all r. We also obtain solutions which are bounded and approach Dempsey's solutions when 2= and 2. Again, under a special loading infinitely many solutions exist for which the stresses are bounded for all r. Care has been exercised in this paper to present the solutions in a form in which the terms r - and ln r are replaced by R -gl and ln R where R=r/r 0is the dimensionless radial distance and r 0 is an arbitrary constant having the dimension of length.  相似文献   

7.
With time domain reflectometry (TDR) two dispersive parameters, the dielectric constant, , and the electrical conductivity, can be measured. Both parameters are nonlinear functions of the volume fractions in soil. Because the volume function of water ( w) can change widely in the same soil, empirical equations have been derived to describe these relations. In this paper, a theoretical model is proposed based upon the theory of dispersive behaviour. This is compared with the empirical equations. The agreement between the empirical and theoretical aproaches was highly significant: the ( w) relation of Topp et al. had a coefficient of determination r 2 = 0.996 and the (u) relation of Smith and Tice, for the unfrozen water content, u, at temperatures below 0°C, had an r 2 = 0.997. To obtain ( w) relations, calibration measurements were performed on two soils: Caledon sand and Guelph silt loam. For both soils, an r 2 = 0.983 was obtained between the theoretical model and the measured values. The correct relations are especially important at low water contents, where the interaction between water molecules and soil particles is strong.  相似文献   

8.
Singh  B.M.  Danyluk  H.T.  Vrbik  J.  Rokne  J.  Dhaliwal  R.S. 《Meccanica》2003,38(4):453-465
This paper deals with the problem of twisting a non-homogeneous, isotropic, half-space by rotating a circular part of its boundary surface (0 r < a, z = 0) through a given angle. A ring (a < r < b, z = 0) outside the circle is stress-free and the remaining part (r > b, z = 0) is rigidly clamped. The shear modulus is assumed to vary with the cylindrical coordinates, r, z by the relation (z) = 1(c + z), c 0 where 1, c and are real constants. Expressions for some quantities of physical importance, such as torque applied at the surface of the disk and stress intensity factors, are obtained. The effects of non-homogeneity on torque and stress intensity factor are illustrated graphically.  相似文献   

9.
An analytical study was made to examine the effect of vascular deformability on the pulsatile blood flow in arterioles through the use of a suitable mathematical model. The blood in arterioles is assumed to consist of two layers — both Newtonian but with differing coefficients of viscosity. The flow characteristics of blood as well as the resistance to flow have been determined using the numerical computations of the resulting expressions. The applicability of the model is illustrated using numerical results based on the existing experimental data. r, z coordinate system - u, axial/longitudinal velocity component of blood - p pressure exerted by blood - b density of blood - µ viscosity of blood - t time - , displacement components of the vessel wall - T t0,T 0 known initial stresses - density of the wall material - h thickness of the vessel wall - T t,T stress components of the vessel - K l,K r components of the spring coefficient - C l,C r components of the friction coefficient - M a additional mass of the mechanical model - r 1 outer radius of the vessel - thickness of the plasma layer - r 1 inner radius of the vessel - circular frequency of the forced oscillation - k wave number - E 0,E t, , t material parameters for the arterial segment - µ p viscosity of the plasma layer - Q total flux - Q p flux across the plasma zone - Q h flux across the core region - Q mean flow rate - resistance to flow - P pressure difference - l length of the segment of the vessel  相似文献   

10.
Zusammenfassung Im Rahmen von Strömungs- und Wärmeübergangsuntersuchungen an flüssig-flüssig Zweiphasenströmungen im Ringspalt ist die Kenntnis der Lage und der Struktur der Phasengrenze von entscheidender Bedeutung. Aus diesem Grunde wurde ein Meßverfahren entwickelt und erprobt, welches darauf beruht, daß die Kapazität eines elektrischen Kondensators von der Beschaffenheit des Dielektrikums abhängt.
A capacitance method to determine the position and structure of the interface in an annular flow
For studying the flowpattern and the heat transfer in liquidliquid two-phase flows in annuli the position and structure of the interface are of desive importance. For this reason an experimental method has been developed. It is based on the fact, that the capacitance of an electric condenser depends on the nature of the dielectricum.

Formelzeichen a Kondensatorlänge - C Kapazität (Meßgröße) - C 0 Schaltungskapazität - C 1 Teilkapazität (öl) - C 2 Teilkapazität (Wasser) - C3 Teilkapazität (Glas) - CL Teilkapazität (Luft) - f Frequenz - g Rohrwandstärke - j Einheitsvektor - Massenstrom (öl) - Massenstrom (Wasser) - p/l Reibungsdruckverlust - r 0=r i +s Lage der Phasengrenzfläche - R 0=r 0/r i dimensionsloser Radius - r a Außenrohrradius - r a= ra/ri dimensionsloser Radius - ri Kernrohrradius - ri Ohmscher Widerstand - R 2 Ohmscher Widerstand - Ros Ohmscher Widerstand - s ölschichtdicke - T Schwingungsdauer - t l Schwingungsdauer - U C Kondensatorspannung - U G Grenzspannung - U os Oszillatorspannung - x Spannungsverhältnis - xc kapazitiver Widerstand - y Spannungsverhältnis - Z komplexer Widerstand Griechische Zeichen dielektrischer Verlustwinkel - 0 allgemeine Dielektrizitätskonstante - 1 Dielektrizitätskonstante (öl) - 2 Dielektrizitätskonstante (Wasser) - 3 Dielektrizitätskonstante (Glas) - L Dielektrizitätskonstante (Luft) - 1 dynamische Viskosität (ö1) - 2 dynamische Viskosität (Wasser) - 1 Dichte (öl) - 2 Dichte (Wasser) - g Grenzflächenspannung - Kreisfrequenz Herrn Prof. Dr.-Ing. U. Grigull zum 70. Geburtstag gewidmet  相似文献   

11.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

12.
Summary Based on Maron-Pierce's equation, an empirical equation was suggested, which relates the relative viscosity ( r ) of the polymer melt filled with various inorganic filler, such as glass fiber, carbon fiber, talc, precipitated- and natural-calcium carbonate powder, and glassy small sphere, to the volume fraction () of the filler. The equation is r = (1 –/A)–2, whereA is a parameter relating to the packing geometry of the filler, which is similar to the parameter 0 in Maron-Pierce's equation. In the equation r is defined as the ratio of the viscosity of the filledsystem to that of the medium at the same shear stress not the shear rate. The applicability of the equation is above the shear stress about 104 dyne/cm2. The equation has a simple form and is considered to have a practical utility for filled-polymer melt systems.With 2 figures and 1 table  相似文献   

13.
Expressions are obtained for the pressure distribution in an externally pressurised thrust bearing for the condition when one bearing surface is rotated. The influence of centripetal acceleration and the combined effect of rotational and radial inertia terms are included in the analysis. Rotation of the bearing causes the lubricant to have a velocity component in an axial direction towards the rotating surface as it spirals radially outwards between the bearing surfaces. This results in an increase in the pumping losses and a decrease in the load capacity of the bearing. A further loss in the performance of the bearing is found when the radial inertia term, in addition to the rotational inertia term is included in the analysis.Nomenclature r, z, cylindrical co-ordinates - V r, V , V z velocity components in the r, and z directions respectively - U, X, W representative velocities - coefficient of viscosity - p static pressure at radius r - p mean static pressure at radius r - Q volume flow per unit time - 2h lubricant film thickness - density of the lubricant - r 2 outside radius of bearing = D/2 - angular velocity of bearing - R dimensionless radius = r/h - P dimensionless pressure = h 3 p/Q - Re channel Reynolds number = Q/h  相似文献   

14.
The steady axisymmetrical laminar flow of slightly rarefied electrically conducting gas between two circular parallel disks in the presence of a transverse magnetic field is analytically investigated. A solution is obtained by expanding the velocity and the pressure distribution in terms of a power series of 1/r. The effect of rare-faction is taken to be manifested by slip of the velocity at the boundary. Velocity, induced magnetic field, pressure and shear stress distributions are determined and compared with the case of no rarefaction.Nomenclature b outer radius of channel - C f skin friction coefficient, w /(Q 2/t 4) - H 0 impressed magnetic field - H r * induced magnetic field in the radial direction - H r induced dimensionless magnetic field in the radial direction, H r * /H 0 - M Hartmann number, H 0 t(/)1/2 - P dimensionless static pressure, P*t 4/Q 2 - P* static pressure - P b dimensionless pressure at outer radius of channel - P 0 reference dimensionless pressure - Q source discharge - R gas constant - Rm magnetic Reynolds number, Q/t - Re Reynolds number, Q/t - 2t channel width - T absolute gas temperature - u dimensionless radial component of the velocity, u*t 2/Q - u* radial component of the velocity - w dimensionless axial component of the velocity, w*t 2/Q - w* axial component of the velocity - z, r dimensionless axial and radial directions, z*/t and r*/t, respectively - z*, r* axial and radial direction, respectively - molecular mean free path - magnetic permeability - coefficient of kinematic viscosity - density - electrical conductivity  相似文献   

15.
In the method of volume averaging, the difference between ordered and disordered porous media appears at two distinct points in the analysis, i.e. in the process of spatial smoothing and in the closure problem. In theclosure problem, the use of spatially periodic boundary conditions isconsistent with ordered porous media and the fields under consideration when the length-scale constraint,r 0L is satisfied. For disordered porous media, spatially periodic boundary conditions are an approximation in need of further study.In theprocess of spatial smoothing, average quantities must be removed from area and volume integrals in order to extractlocal transport equations fromnonlocal equations. This leads to a series of geometrical integrals that need to be evaluated. In Part II we indicated that these integrals were constants for ordered porous media provided that the weighting function used in the averaging process contained thecellular average. We also indicated that these integrals were constrained by certain order of magnitude estimates for disordered porous media. In this paper we verify these characteristics of the geometrical integrals, and we examine their values for pseudo-periodic and uniformly random systems through the use of computer generated porous media.

Nomenclature

Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - a i i=1, 2, 3 gaussian probability distribution used to locate the position of particles - I unit tensor - L general characteristic length for volume averaged quantities, m - L characteristic length for , m - L characteristic length for , m - characteristic length for the -phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1, 2, 3 lattice vectors, m - m convolution product weighting function - m v special convolution product weighting function associated with the traditional volume average - n i i=1, 2, 3 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - r position vector, m - r m support of the weighting functionm, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume,, m3 - x positional vector locating the centroid of an averaging volume, m - x 0 reference position vector associated with the centroid of an averaging volume, m - y position vector locating points relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - /L, small parameter in the method of spatial homogenization - standard deviation ofa i - r standard deviation ofr - r intrinsic phase average of   相似文献   

16.
An analysis is presented for fully developed laminar convective heat transfer in a pipe provided with internal longitudinal fins, and with uniform outside wall temperature. The fins are arranged in two groups of different heights. The governing equations have been solved numerically to obtain the velocity and temperature distributions. The results obtained for different pipe-fins geometries show that the fin heights affect greatly flow and heat transfer characteristics. Reducing the height of one fin group decreases the friction coefficient significantly. At the same time Nusselt number decreases inappreciably so that such reduction is justified. Thus, the use of different fin heights in internally finned pipes enables the enhancement of heat transfer at reasonably low friction coefficient.Nomenclature Af dimensionless flow area of the finned pipe, Eq. (8) - af flow area of the finned pipe - Cp specific heat at constant pressure - f coefficient of friction, Eq. (12) - H1, H2 dimensionless fin height h1/ro h2/ro - h1, h2 fin heights - average heat transfer coefficient at solid-fluid interface - KR fin conductance parameter, ks/kf - kf thermal conductivity of fluid - ks thermal conductivity of fin - l pipe length - mass flow rate - N number of fins - Nu Nusselt number, Eqs. (15) and (16) - P pressure - Q total heat transfer rate at solid fluid interface - Qf1, Qf2 heat transfer rate at fin surface - qw average heat flux at pipe-wall, Q/(2 rol) - R dimensionless radial coordinate r/ro - Re Reynolds Number, Eq. (13) - r radial coordinate - ro radius of pipe - r1, r2 radii of fin tips - T temperature - Tb bulk temperature - U dimensionless velocity, Eq. (2) - Ub dimensionless bulk velocity - uz axial velocity - z axial coordinate - angle between the flanks of two adjacent fins - half the angle subtended by a fin - angle between the center-lines of two adjacent fins - angular coordinate - dynamic viscosity - density - dimensionless temperature, Eq. (6) - b dimensionless bulk temperature  相似文献   

17.
The effects of MHD free convection and mass transfer are taken into account on the flow past oscillating infinite coaxial vertical circular cylinder. The analytical expressions for velocity, temperature and concentration of the fluid are obtained by using perturbation technique.
Einwirkungen von freier MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden unendlichen koaxialen vertikalen Zylinder
Zusammenfassung Die Einwirkungen der freien MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden, unendlichen, koaxialen, vertikalen Zylinder wurden untersucht. Die analytischen Ausdrücke der Geschwindigkeit, Temperatur und Fluidkonzentration sind durch die Perturbationstechnik erhalten worden.

Nomenclature C p Specific heat at constant temperature - C the species concentration near the circular cylinder - C w the species concentration of the circular cylinder - C the species concentration of the fluid at infinite - * dimensionless species concentration - D chemical molecular diffusivity - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - K thermal conductivity - Pr Prandtl number - r a ,r b radius of inner and outer cylinder - a, b dimensionless inner and outer radius - r,r coordinate and dimensionless coordinate normal to the circular cylinder - Sc Schmidt number - t time - t dimensionless time - T temperature of the fluid near the circular cylinder - T w temperature of the circular cylinder - T temperature of the fluid at infinite - u velocity of the fluid - u dimensionless velocity of the fluid - U 0 reference velocity - z,z coordinate and dimensionless coordinate along the circular cylinder - coefficient of volume expansion - * coefficient of thermal expansion with concentration - dimensionless temperature - H 0 magnetic field intensity - coefficient of viscosity - e permeability (magnetic) - kinematic viscosity - electric conductivity - density - M Hartmann number - dimensionless skin-friction - frequency - dimensionless frequency  相似文献   

18.
In this investigation some hydrodynamic characteristics of two phase, two component, air water bubbly flow in a vertical annulus were studied. In particular, the void fraction profiles, and the pressure fluctuations were measured by the electrical resistivity probe and a capacitive type differential transducer respectively. These measurements were assessed under various system parameters, viz the air and water flux, the perforation ratio (Area of holes/channel cross sectional area) and the dimensionless axial distance. In addition, the pressure drop calculated from the void fraction measurements was in very good agreement with the corresponding one measured by the pressure transducers.List of symbols D eq equivalent diameter of the annular channel (m) - j flux (discharge/channel cross sectional area) (m/s) - m mass flow rate (kg/s) - P pressure (Pa) - AP static pressure difference along the test section (Pa) - P pressure fluctuations (Pa) - P * dimensionless pressure (P m/P S.P. ) - P dimensionless pressure fluctuations (P max /P T.P. ) - r radius (m) - z axial distance (m) Greek symbols void fraction - dimensionless axial distance (Z/Dimeq) - perforation ratio (area of holes/channel cross sectional area) - density (kg/m3) - time (s) - dimensionless radial distance (r–r i )/(r o-r i ) Suffix g gas - i inner - L liquid - m mean - Max Maximum - O outer - S.P. single-phase - T.P. two-phase  相似文献   

19.
Flow-induced surface displacements that form on a singlelayer passive isotropic viscoelastic compliant surface as a result of the interaction with a turbulent boundary layer are measured by non-intrusive optical holographic interferometry in connection with an interactive fringe-processing system. The purpose for developing this method is to obtain the instantaneous topographic features of a whole field of the displacements of the compliant surface. Information about dimensions of the foot prints of the turbulence on the compliant surface are obtained in the form of line contours and isometric phase maps. These experimental data are essential in order to determine statistical measures of the random topography of the compliant surface. Furthermore, by coupling with the simultaneous measurements of the turbulence field, the physics of the alteration of the turbulent boundary layer by the undulating surface can then be better understood.List of symbols A light amplitude - A 0 light amplitude of object beam - A r light amplitude of reference beam - c light speed - d e diameter of laser beam - d p diameter of pinhole - d s spatial frequency - E exposure energy - f focal length - I in light intensity at photographic plate - I 0 light intensity of object beam - I r light intensity of reference beam - k wave number, 2 / - L in light amplitude records on the emulsion surface - L 0 light ray of object beam - L r light ray of reference beam - R Reynolds number based on momentum thickness, V / - t time - t e exposure time - T 0 uniform background light transmittance - T re reconstructed light through hologram - T t amplitude transmittance of hologram - V freestream flow speed - radian frequency, k c - x distance from the leading edge of the flat plate - z position - slope - optical path difference - phase - 0 phase of object beam - r phase of reference beam - wavelength - momentum thickness - 0 angle between the object beam with respect to the normal of the photographic plate - r angle between the reference beam with respect to the normal of the photographic plate - kinematic viscosity of water  相似文献   

20.
In the present paper an attempt has been made to find out effects of uniform high suction in the presence of a transverse magnetic field, on the motion near a stationary plate when the fluid at a large distance above it rotates with a constant angular velocity. Series solutions for velocity components, displacement thickness and momentum thickness are obtained in the descending powers of the suction parameter a. The solutions obtained are valid for small values of the non-dimensional magnetic parameter m (= 4 e 2 H 0 2 /) and large values of a (a2).Nomenclature a suction parameter - E electric field - E r , E , E z radial, azimuthal and axial components of electric field - F, G, H reduced radial, azimuthal and axial velocity components - H magnetic field - H r , H , H z radial, azimuthal and axial components of magnetic field - H 0 uniform magnetic field - H* displacement thickness and momentum thickness ratio, */ - h induced magnetic field - h r , h , h z radial, azimuthal and axial components of induced magnetic field - J current density - m nondimensional magnetic parameter - p pressure - P reduced pressure - R Reynolds number - U 0 representative velocity - V velocity - V r , V , V z radial, azimuthal and axial velocity components - w 0 uniform suction through the disc. - density - electrical conductivity - kinematic viscosity - e magnetic permeability - a parameter, (/)1/2 z - a parameter, a - * displacement thickness - momentum thickness - angular velocity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号