首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectra of a crystal of L ‐leucine, an essential amino acid, were obtained for pressures between 0 and 6 GPa. The results show anomalies at three pressure values, one between 0 and 0.46 GPa, another between 0.8 and 1.46 GPa, and a third at P ∼ 3.6 GPa. The first two anomalies are characterized by the disappearance of lattice modes (which can indicate occurrence of phase transitions), the appearance of several internal modes, or the splitting of modes of high wavenumbers. The changes of internal modes are related to CH and CH3 unit motions as well as hydrogen bonds, as can be inferred from the behavior of bands associated with CO2 moieties. The third anomaly is a discrete change of the slopes of the wavenumber versus pressure plots for most modes observed. Further, decompression to ambient pressure generates the original Raman spectrum, showing that the pressure‐induced anomalies undergone by L ‐leucine crystals are reversible. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Polarized Raman spectra of a single crystal of gadolinium molybdate [Gd2(MoO4)3] were obtained between 1 atm and 7 GPa. Using a mixture of alcohols as the pressure‐transmitting medium, YY, ZZ, XY components of scattering matrices were measured. The ZZ spectra were also obtained in argon. Five phase transitions and amorphization were identified. The first and second transitions are reversible, while amorphization is not. In alcohol, amorphization is observed above 6.5 GPa. With argon as the pressure‐transmitting medium, amorphization is progressive and begins above 3 GPa. The spectral changes with pressure affect the high wavenumber bands attributed to symmetric and antisymmetric MoO4 stretching modes as well as the very low wavenumber modes such as librations of the tetrahedra. This means that both short‐range and long‐range organizations of the tetrahedra are involved in these phase transitions. The amorphization mechanism and its dependence on the pressure‐transmitting medium are discussed, and the steric hindrance between polyhedra is believed to be the most relevant mechanism. The TO and LO low wavenumber modes of A1 symmetry, observed in the Y(ZZ)Y and Z(YY)Z geometries, respectively, below 50 cm−1, soften continuously through the first three phases when increasing pressure. The strong A2 mode observed in the Z(XY)Z spectra exhibits the same anomalous behavior by decreasing from 53 to 46 cm−1 at 2 GPa. The softening of these modes is related to the orientation change of tetrahedra observed by ab initio calculations when the volume of the cell is decreased. These orientation changes can explain the wavenumber decrease of the Mo O stretching modes above 2 GPa, which indicates an increase of Mo coordination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The high‐pressure behaviour of cordierite, a widespread ring aluminosilicate with channels incorporating fluid compounds (H2O, CO2), is characterized by the absence of phase transitions up to 2.5 GPa. However, the distortion of the ring tetrahedra observed previously at 2.3 GPa is supposed to introduce a phase transition at higher pressure, which has not been checked so far. This work presents a high‐pressure Raman spectroscopic study of natural cordierite compressed in water medium up to 4.7 GPa in a diamond anvil cell. At P > 4 GPa, a disordering of both the framework and intrachannel H2O subsystem is apparent from significant broadening of Raman peaks and the evolution of short‐range order parameters. This is followed by abrupt shifts of the framework and O–H stretching modes at about 4.5 GPa, indicating a first‐order phase transition. Its reversibility is seen from the recovery of the initial spectrum at P < 3 GPa. The shift amplitudes of different framework modes indicate the predominance of distortion over contraction of the framework polyhedra upon this transition. The disordering of the H2O subsystem in the high‐pressure phase is likely a consequence of distortion of the channel‐forming framework elements, which is supposed to be a driving force of this transition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A rare mineral shortite, Na2Ca2(CO3)3, occurs among groundmass minerals in unaltered kimberlites, which suggests its participation in the evolution of kimberlite system. This work presents a high pressure Raman spectroscopic study of natural shortite (Udachnaya east kimberlites) compressed in KBr up to 8?GPa in a diamond anvil cell. At ambient pressure the spectrum contains two strong bands related to symmetric C-O stretching vibrations, four in-plane bending modes, and several low-frequency modes of lattice vibrations. Upon the pressure increase up to 8?GPa, almost all the bands exhibit positive shift with the rate of 1–4?cm?1/GPa for the lattice modes and 3.6 and 3.9?cm?1/GPa for the C-O stretching modes. The shifts of Raman modes are rather regular, which implies the absence of reconstructive phase transitions within the studied pressure range, similarly to the behavior of nyerereite, a related carbonate mineral. However, minor anomalies in the ν/P and FWHM/P dependences, observed at about 2?GPa, suggest some rearrangement and disordering of carbonate groups. The obtained data can be used for the estimation of residual pressure in shortite-bearing inclusions in deep-seated minerals.  相似文献   

5.
Single crystal Brillouin and Raman scattering measurements on NH3 in a diamond anvil cell have been performed under pressures up to 26 GPa at room temperature. The pressure dependencies of acoustic velocity, adiabatic elastic constants, and bulk moduli of ammonia from liquid to solid III and solid IV phase have been determined. All the nine elastic constants in orthorhombic structure phase IV were presented for the first time, each elastic constant grows monotonously with pressure and a crossover of the off‐diagonal moduli C12 and C13 was observed at around 12 GPa because of their different pressure derivative values. We also performed ab initio simulations to calculate the bulk elastic moduli for orthorhombic ammonia, the calculated bulk moduli agree well with experimental results. In Raman spectra the very weak bending modes ν2 and ν4 for orthorhombic ammonia are both observed at room temperature, a transition point near 12 GPa is also found from the pressure evolution of the Raman bands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Single crystalline C60 nanotubes having face‐centered‐cubic structure with diameters in the nanometer range were synthesized by a solution method. In situ Raman and photoluminescence spectroscopy under high pressure were employed to study the structural stabilities and transitions of the pristine C60 nanotubes. A phase transition, probably because of the orientational ordering of C60 molecules, from face‐centered‐cubic structure to simple cubic structure occurred at the pressure between 1.46 and 2.26 GPa. At above 20.41 GPa, the Raman spectrum became very diffuse and lost its fine structure in all wavenumber regions, and only two broad and asymmetry peaks initially centered at 1469 and 1570 cm–1 were observed, indicating an occurrence of amorphization. This amorphous phase remained to be reversible until 31.1 GPa, and it became irreversible to the ambient pressure after the pressure cycle of 34.3 GPa was applied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, a detailed study of the structural, electronic, and absorption properties of crystalline 7,2′‐anhydro‐β‐d ‐arabinosylorotidine (Cyclo ara‐O) in the pressure range of 0–350 GPa is performed by density functional theory calculations. The detail analysis of the crystal with increasing pressure shows that complex transformations occur in Cyclo ara‐O under compression. In addition, the b‐direction is much stiffer than the a‐ and c‐axis at 0–330 GPa, suggesting that the Cyclo ara‐O crystal is anisotropic in the certain pressure region. In the pressure range of 110–290 GPa, repeated formations and disconnections of covalent bonds in O7–O6* and C3–C6* occur several times, resulting in a new six‐atom ring that forms at 220, 270, and 290 GPa, while a five‐atom ring and seven‐atom ring form between two adjacent molecules at 300 and 340 GPa, respectively. Then, the analysis of the band gap and DOS (PDOS) of Cyclo ara‐O indicates that its electronic character has changed at 300 GPa into an excellent insulator, but the electron transition is much easier at 350 GPa. Moreover, the relatively high optical activity with the pressure increases of Cyclo ara‐O is seen from the absorption spectra, and two obvious structural transformations are also observed at 180 and 230 GPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The micro/nano structural evolution of PBO (poly(paraphenylenebenzobisoxazole), commercial name Zylon) fibres has been studied by Raman and IR spectroscopy in a diamond‐anvil cell, up to ∼15 GPa. Different modes were considered in the 900–1700 cm−1 (Raman) and 800–3300 cm−1 (IR) spectral range. The material behaviour appears more similar to that of a densely packed inorganic structure than to the behaviour previously observed for polyamide fibres, and is related to the compact arrangement of the rigid heterocyclic rings. Wavenumber shift starts with increase in pressure and a transition between the two regimes was revealed at ∼2–2.5 GPa, and it was assigned to the loss of order between neighbouring PBO chains. A good correlation is observed between the macroscopic mechanical properties and the nanomechanics at the chemical bond scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Layer silicates F‐ and OH‐apophyllites, KCa4Si8O20(F, OH)·8H2O, have been investigated by Raman spectroscopy at hydrostatic and nonhydrostatic pressures up to ~8 GPa in diamond anvil cells using a 4 : 1 methanol–ethanol mix as pressure‐transmitting medium. Our experiments show that at hydrostatic compression, apophyllites retain their crystalline states (i.e. no amorphization) up to 5 GPa. The wavenumbers of most bands exhibit linear dependences on pressure, except for a few ones, e.g. at 162 and 3565 cm–1 in OH‐form (160.5 and 3558 cm–1 in F‐form) that show nonlinear dependences. Nonhydrostatic compression with additional uniaxial loading induces amorphization of apophyllites. The majority of the bands in OH‐apophyllite decreases markedly in intensity and shows considerable broadening under nonhydrostatic compression up to 3–6 GPa. In addition, the wavenumbers of several bands at nonhydrostatic compression exhibit considerable nonlinear dependences on pressure with strong hysteresis. These bands are mainly associated with vibrations of the interlayer ions and molecules and also of stretching and bending silicate sheets, hence being highly sensitive to the interlayer distance. Finally, we have calculated the lattice dynamics of F‐apophyllite and interpreted the majority of bands, and these data are used to explain the complex baric behavior of the bands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The pressure dependences of the peaks observed in the micro‐Raman spectra of Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O) have been measured up to 5.0 GPa. The vibrational modes of Prussian blue appearing at 201 and 365 cm−1 show negative dν/dP values and Grüneisen parameters and are assigned to the transverse bending modes of the Fe C N Fe linkage which can contribute to a negative thermal expansion behavior. A phase transition occurring between 2.0 and 2.8 GPa in potassium ferricyanide is shown by changes in the spectral region 150–700 cm−1. In the spectra of the nitroprusside ion, there are strong interactions between the FeN stretching mode and the FeNO bending and the axial CN stretching modes. The pressure dependence of the NO stretching vibration is positive, 5.6 cm−1 GPa−1, in contrast to the negative behavior in the iron(II)‐meso‐tetraphenyl porphyrinate complex. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectra of deuterated L ‐alanine have been obtained at high‐pressure conditions. A phase transition at ∼1.5 GPa associated with the splitting of some internal modes and increase of the wavenumber of the external modes was observed. Similarly to the hydrogenated L ‐alanine crystal, this first transition was related to a symmetry change. Moreover, further modifications of the Raman spectra were observed at 4.4 GPa, which may be associated to conformational changes of the molecule. To give further support to such a hypothesis, neutron powder diffraction measurements were performed. Information about the cell parameter at atmospheric pressure gave valuable information about the N D distances, shedding light on the behavior of the torsional vibration of ND3+. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectra of an L ‐methionine (C5H11NO2S) crystal were obtained in the spectral region between 50 and 3200 cm−1 for pressures up to 5 GPa. Pronounced changes of the Raman spectra were observed for bands associated to rocking of CO2; wagging of CO2; deformations of CO2, CH3, and NH3+; and stretching vibrations of SC, CC, CH, CH2, and CH3. Upon decompression to ambient pressure the original Raman spectrum prior to compression is recovered. These modifications were associated to a reversible phase transition undergone by the L ‐methionine crystal at about 2.2 GPa, with a hysteresis of ∼0.8 GPa. Pressure coefficients for most of the internal modes of the crystal are given. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Infrared absorption and Raman study ofβ-Ni(OH)2 has been carried out up to 25 GPa and 33 GPa, respectively. The frequency ofA 2u internal antisymmetric stretching O-H mode decreases linearly with pressure at a rate of −0.7 cm1/GPa. The FWHM of this mode increases continuously with pressure and reaches a value of ∼ 120 cm−1 around 25 GPa. There was no discernible change observed in the frequency and width of the symmetric stretchingA 1g O-H Raman mode up to 33 GPa. The constancy of the Raman mode is taken as a signature of the repulsion produced by H-H contacts in this material under pressure. Lack of any discontinuity in these modes suggests that there is no phase transition in this material in the measured pressure range.  相似文献   

14.
The first high pressure study of solid hydrazinium monochloride has been performed by in situ Raman spectroscopy and synchrotron X‐ray diffraction (XRD) experiments in diamond anvil cell (DAC) up to 39.5 and 24.6 GPa, respectively. The structure of phase I at room temperature is confirmed to be space group C2/c by the Raman spectral analysis and Rietveld refinement of the XRD pattern. A structural transition from phase I to II is observed at 7.3 GPa. Pressure‐induced position variation of hydrogen atoms in NH3+ unit during the phase transition is attributed to the formation of N―H…Cl hydrogen‐bonds, which play a vital role in the stability and subsequent structural changes of this high energetic material under pressure. This inference is proved from the abnormal pressure shifts and obvious Fermi resonance in NH stretching mode of N2H5+ ion in the Raman experiment. Finally, a further transition from phase II to III accompanied with a slight internal distortion in the N2H5+ ions occurs above 19.8 GPa, and phase III persists up to 39.5 GPa. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Recent spectroscopic investigations of various amino acids report intriguing high‐pressure and low‐temperature behavior of NH3+ groups and their influence on various hydrogen bonds in the system. In particular, the variation of the intensity of NH3+ torsional mode at different temperatures and pressures has received much attention. We report here the first in situ Raman investigations of fully deuterated α‐glycine up to ∼20 GPa. The discontinuous changes in COO and ND3+ modes across ∼3 GPa indicate subtle structural rearrangements in fully deuterated α‐glycine. The decrease in the intensity of ND3+ torsional mode is found to be similar to that of undeuterated α‐glycine. The pressure‐induced stiffening of N D and CD2 stretching modes are discussed in the context of changes in the hydrogen‐bonding interactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A systematic study on lattice dynamics of Mn + 1AlCn (n = 1–3) phases using first‐principle calculations is reported, where the Raman‐active and infrared‐active (IR) modes are emphasized. The highest phonon wavenumber is related to the vibration of C atoms. The ‘imaginary wavenumber’ in the phonon spectrum of Nb3AlC2 contributes to the composition gap in Nb‐Al‐C system (Nb2AlC and Nb4AlC3 do appear in experiments, but there are no experimental reports on Nb3AlC2). The full set of Raman‐active and IR‐active modes in the 211, 312, and 413 Mn + 1AXn phases is identified, with the corresponding Raman and IR wavenumbers. The 211, 312, and 413 Mn + 1AXn phases have 4, 6, and 8 IR‐active modes, respectively. There is no distinct difference among the wavenumber ranges of IR‐active modes for 211, 312, and 413 phases, with the highest wavenumber of 780 cm−1 in Ta4AlC3. The Raman wavenumbers of M2AlC phases all decrease with increasing the d‐electron shell number of transition metal M. However, this case is valid only for the Raman‐active modes with low wavenumbers of M3AlC2 and M4AlC3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
We revisit the assignment of Raman phonons of rare‐earth titanates by performing Raman measurements on single crystals of O18 isotope‐rich spin ice and nonmagnetic pyrochlores and compare the results with their O16 counterparts. We show that the low‐wavenumber Raman modes below 250 cm−1 are not due to oxygen vibrations. A mode near 200 cm−1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder‐induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the ‘new’ Raman mode, observed below TC ~ 110 K in Dy2Ti2O7, through a simultaneous pressure‐dependent and temperature‐dependent Raman study. Our study confirms the ‘new’ mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to ~8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The molecular structures and vibrational properties of 1H‐imidazo[4,5‐b]pyridine in its monomeric and dimeric forms are analyzed and compared to the experimental results derived from the X‐ray diffraction (XRD), infrared (IR), and Raman studies. The theoretical data are discussed on the basis of density functional theory (DFT) quantum chemical calculations using Lee–Yang–Parr correlation functional (B3LYP) and 6‐31G(d,p) basis. This compound crystallizes in orthorhombic structure, space group Pna21(C2v9) and Z = 4. The planar conformation of the skeleton and presence of the N H···N hydrogen bond was found to be characteristic for the studied system. The temperature dependence of IR and Raman modes was studied in the range 4–294 K and 8–295 K, respectively. The normal modes, which are unique for the imidazopyridine derivatives are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we investigate the solvation of silver bis(trifluoromethylsulfonyl)imide salt (AgTFSI) in 1‐ethyl‐3‐methylimidazolium TFSI [EMI][TFSI] ionic liquid by combining Raman and infrared (IR) spectroscopies with density functional theory (DFT) calculations. The IR and Raman spectra were measured in the 200–4000 cm−1 spectral region for AgTFSI/[EMI][TFSI] solutions with different concentrations ([AgTFSI] <0.2 mole fraction). The analysis of the spectra shows that the spectral features observed by dissolution of AgTFSI in [EMI][TFSI] solution originate from interactions between the Ag+ cation and the first neighboring TFSI anions to form relatively stable Ag complexes. The ‘gas phase’ interaction energy of a type [Ag(TFSI)3]2− complex was evaluated by DFT calculations and compared with other interionic interaction energy contributions. The predicted spectral signatures because of the [Ag(TFSI)3]2− complex were assessed in order to interpret the main IR and Raman spectral features observed. The formation of such complexes leads to the appearance of new interaction‐induced bands situated at 753 cm−1 in Raman and at 1015 and 1371 cm−1 in IR, respectively. These specific spectral signatures are associated with the ‘breathing’ mode and the S–N–S and S–O stretching modes of the TFSI anions engaged in the complex. Finally, all these findings are discussed in terms of interaction mechanisms enabling the electrodeposition characteristics of silver from AgTFSI/[EMI][TFSI] IL‐based electrolytic solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号