首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An organosilane with an alkyne group at the non‐condensable end, [(2‐propynylcarbamate)propyl]triethoxysilane, has been synthesized. Condensation of this organosilane with tetraethoxysilane can be achieved by a co‐condensation strategy to produce silica nanoparticles with surface alkyne functionality. The size and uniformity of size distribution of the silica nanoparticles are influenced by varying the concentration of the added organosilane. The alkyne‐functionalized silica nanoparticles are coupled directly with azide‐modified polymers by ‘click chemistry’ to yield organic–inorganic hybrid nanomaterials.

  相似文献   


2.
Au nanoparticles (NPs) and polymer composite particles with phase‐separation structures were prepared based on phase separation structures. Au NPs were successfully synthesized in amphiphilic block‐copolymer micelles, and then composite particles were formed by a simple solvent evaporation process from Au NPs and polymer solution. The phase separated structures (Janus and Core‐shell) were controlled by changing the combination of polymers having differing hydrophobicity.

  相似文献   


3.
A polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core‐shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell‐embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS‐b‐P2VP hybrid NPs is confirmed by transmission electron microscopy, energy‐dispersive X‐ray, and UV‐Vis absorption.

  相似文献   


4.
Summary: Bimolecular type‐II photoinitiators for radical photopolymerization suffer from a diffusion‐controlled limitation of reactivity and from deactivation by back electron transfer. Here, a very efficient concept to increase the photoinitiator activity by the covalent binding of phenylglycine to benzophenone using a methylene spacer is presented. Photo‐DSC experiments proved that the rate of polymerization can be tripled in comparison to a physical mixture of the components or an industrially applied system with triethanolamine as coinitiator.

Structure of the new photoinitiator synthesized here.  相似文献   


5.
This review covers the literature concerning the modification of polysaccharides through controlled radical polymerizations (NMP, ATRP and RAFT). The different routes to well‐defined polysaccharide‐based macromolecules (block and graft copolymers) and graft‐functionalized polysaccharide surfaces as well as the applications of these polysaccharide‐based hybrids are extensively discussed.

  相似文献   


6.
Summary: Polystyrene (PS) micro‐ and nanospheres with uniform dimensions and smooth surfaces have been produced by electrospray. The effect of PS molecular weight on beads morphology and the fundamental role of concentration have been investigated. Moreover, a new apparatus was designed to collect the polymer spheres during the process and to prevent the coalescence among the spheres.

PS micro‐ and nanospheres produced by electrospray  相似文献   


7.
Colloidal photonic crystals were prepared from monodisperse core–shell particles. The shell is hereby formed from a functional monomer, such as glycidylmethacrylate or different reactive ester monomers, which can perform chemical reactions and the core from a standard monomer, which yields highly monodisperse colloids. It was possible to crystallize the core–shell particles into artificial opals with excellent optical properties. Reactions on the functional surface of the colloids were carried out, which lead to a dramatic rise in the mechanical stability or to a functionalization of His‐tagged silicatein, which acts as nanoreactor to synthesize and immobilize gold nanoparticles from auric acid onto the core–shell colloids.

  相似文献   


8.
Different micromechanical models for the prediction of mechanical properties of CNT/polymer composites, taking into consideration filler percolation throughout the matrix, are considered. It is demonstrated that the critical filler volume fraction, where a percolating network of CNTs is forming, marks a “turning point” in the reinforcement efficiency. Expectations for the reinforcing effect of CNTs at concentrations above a percolating threshold with the current technology are in general unrealistic.

  相似文献   


9.
We report here on the formation of hybrid compound block copolymer micelles encapsulating gold nanoparticles, utilizing a direct and general preparation method. The giant hybrid compound micelles are structured with micelles of PS‐b‐P2VP with gold nanoparticles in their P2VP core and PI‐b‐PS chains as the outer part of the compound micelles. The gold nanoparticles were produced using gold ion‐loaded PS‐b‐P2VP micelles as a nanoreactor, in a PS selective solvent (toluene), by the subsequent reduction of gold ions. The synthesis of the gold nanoparticles was monitored by UV‐vis spectroscopy. The gold containing micelles were then encapsulated in larger micelles of PI‐b‐PS copolymer, by successive utilization of toluene and heptane with the intermediate evaporation of toluene. The nanoassembly of the compound materials comprised a PI corona and a PS compound core, with P2VP/Au0 domains, and was characterized using UV‐vis spectroscopy, dynamic light scattering and transmission electron microscopy.

  相似文献   


10.
The mean diameter of poly[2‐(dimethylamino)ethyl methacrylate]‐block‐poly[2‐(diisopropylamino)ethyl methacrylate] (PDMA‐PDPA) diblock copolymer micelles can be easily adjusted from 27–155 nm (as measured by DLS) by either selective quaternisation of the PDMA block or by adding PDPA homopolymer prior to micellisation; these self‐assembled nanostructures can be shell crosslinked with 1,2‐bis‐(2‐iodoethoxy)ethane and subsequently used as templates for the preparation of silica‐coated nanoparticles and, ultimately, hollow silica nanoparticles.

  相似文献   


11.
Summary: A methacrylate‐functionalized poly(ethylene glycol) macromonomer was copolymerized at the surface of methacrylate‐derivatized maghemite nanoparticles. After silylation of the magnetic core with methacryloxypropyltrimethoxysilane, two grafting procedures based on either a direct copolymerization reaction in water or an inverse emulsion polymerization were compared. A direct copolymerization led to low polymer surface amounts, whereas an inverse emulsion process allowed nanocomposite particles containing up to 90 wt.‐% polymer to be obtained.

TEM picture of maghemite‐PEG hybrid particles.  相似文献   


12.
Summary: Poly(dimethylsiloxane) (PDMS) star polymers having a nanosized silica particle as a core were prepared by reacting silica nanoparticles with monoglycidylether‐terminated poly(dimethylsiloxane). This star polymer was a hybrid material having an extremely high content of silica. The PDMS arms formed an organic domain to separate the silica particles and to prevent particle aggregation. The star polymers exhibited good thermal stability and high activation energy of their degradation reaction, in comparison to the linear PDMS polymer and the PDMS/silica blending materials. This star polymer can be used as a flame retardant for polymeric materials and this preparation technique can be applied to prepare other star polymers.

An SEM image of poly(dimethylsiloxane) star polymers having nanosized silica particles as a core.  相似文献   


13.
14.
New aromatic compounds with a pyridazine core have been synthesized. Four electron‐withdrawing monomers have been easily prepared from simple condensation reactions and ring closure procedures. Optimized HOMO, LUMO, and bandgap energy levels have been obtained. The resulting conjugated polymers have been tested in organic solar cells. First studies have revealed power conversion efficiencies up to 0.5% for an active area of 1.0 cm2.

  相似文献   


15.
We describe an enzyme‐responsive polymeric vehicle, which is of great interest in controlled drug delivery, biosensing, and other related areas. The polymer synthesized using lipase as catalyst in DMSO has a favorable molecular structure that is quickly hydrolyzed by lipase in aqueous phase, and allows a fast release of encapsulated molecules.

  相似文献   


16.
A dramatic increase in the photostability of a blue‐light‐emitting polymer, poly(9,9‐dioctylfluorene), was achieved by the addition of 5–10 nm gold nanoparticles. The optical absorption band of the gold nanoparticles was tuned to resonate the triplet exciton ground state bandgap energy of the polymer. Photo‐oxidation rate of poly(9,9‐dioctylfluorene) was effectively reduced by doping the polymer with very small amounts (≈10−6–10−5 volume fraction) of the gold nanoparticles.

Retarded photo‐oxidation in PDOF nanocomposite films with various doped gold nanoparticles.  相似文献   


17.
Transparent film materials with excellent mechanical and thermal properties were elaborated by drying a latex suspension of armored polymer/Laponite composite particles. Low‐temperature TEM observation of ultrathin cross‐sections of the films indicated a unique network morphology characterized by a “honeycomb” distribution of the Laponite platelets remindful of the original particles morphology.

  相似文献   


18.
This study reveals the influence of silica nanoparticles on the cure reactions of a diglycidyl ether of bisphenol A epoxy resin. As soon as the silica nanoparticles are added to the neat resin (1, 3, and 5 vol.‐%), the total degree of conversion increases with an increasing amount of nanoparticles, and the cure reaction shows a more complex autocatalytic behaviour, which can not be described by a traditional kinetic model. Results from subsequent thermo‐mechanical analyses confirm an alteration in the microstructure attributable only to the presence of the nanoparticles in the curing stage. An amino‐rich interphase around the reactive treated particles is formed, which shifts the resin/hardener ratio, and benefits the homopolymerization of the epoxy and leads to a more highly crosslinked epoxy network. At the same time, the nanophase consists of a core‐shell structure with the rigid particle inside and a rubber‐like shell because of the excess hardener in this region.

TEM image of two neighboring silica nanoparticles in the epoxy matrix showing a 2–3 nm altered interphase region.  相似文献   


19.
Summary: For the first time, thermoreversible ferrogels (FG) by physical gelation of ferrofluids have been described. Finavestan A80B paraffin oil in a concentration range of the gelator KRATON G‐1650 with Cgelator = 3–10 wt.‐%, was used to obtain stable and homogeneous FGs. TEM micrographs revealed that the magnetite particles are preferably located in the ‘free’ paraffin phase between micellar domains of the gelator. So, the magnetite nanoparticles make visible a ‘negative’ picture of the structure of the micellar domains of the gel, which is observed in the pure gel as a ‘positive’ image. The mean diameter of the polystyrene cores is = 17 nm, and that of the magnetite particles is = 7 nm.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号